Investigation of the Problem of Optimal Correction of Angular Elements of the Spacecraft Orbit Using Quaternion Differential Equation of Orbit Orientation

被引:0
作者
Kozlov, E. A. [1 ]
Chelnokov, Yu N. [1 ]
Pankratov, I. A. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, 83 Astrakhanskaya St, Saratov 410012, Russia
来源
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA | 2016年 / 16卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
spacecraft; orbit; optimal control; quaternion; angular orbital elements;
D O I
10.18500/1816-9791-2016-16-3-336-344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of optimal correction of angular elements of the spacecraft orbit. Control (jet thrust vector orthogonal to the plane of the orbit) is limited by absolute value. The combined quality functional characterizes the amount of time and energy consumption. With the help of the Pontryagin maximum principle and quaternion differential equation of the spacecraft orbit orientation, we have formulated differential boundary value problem of correction of the angular elements of the spacecraft orbit. Optimal control law, transversality conditions, not containing Lagrange multipliers, examples of the numerical solution of the problem are given.
引用
收藏
页码:336 / 344
页数:9
相关论文
共 11 条
[1]  
Abalakin V. K., 1976, SPRAVOCNOE RUKOVODST
[2]  
Bordovitzyna T. V, 1984, SOVREMENNYE CHISLENN
[3]  
Branets V.N., 1973, PRIMENENIE KVATERNIO
[4]  
Brumberg V.A., 1995, ANAL TECHNIQUES CELE
[5]   Optimal reorientation of a spacecraft's orbit using a jet thrust orthogonal to the orbital plane [J].
Chelnokov, Yu. N. .
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2012, 76 (06) :646-657
[6]  
Chelnokov YuN, 2006, KVATERNIONNYE BIKVAT
[7]   Optimal reorientation of spacecraft orbit [J].
Chelnokov, Yuriy Nikolaevich ;
Pankratov, Ilya Alekseevich ;
Sapunkov, Yakov Grigorievich .
ARCHIVES OF CONTROL SCIENCES, 2014, 24 (02) :119-128
[8]   IDEAL FRAMES FOR PERTURBED KEPLERIAN MOTIONS [J].
DEPRIT, A .
CELESTIAL MECHANICS, 1976, 13 (02) :253-263
[9]  
Moiseev N.N., 1971, CHISLENNYE METODY TE
[10]   About a Problem of Spacecraft's Orbit Optimal Reorientation [J].
Pankratov, I. A. ;
Sapunkov, Y. G. ;
Chelnokov, Y. N. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (03) :87-95