AN EXPLICIT THEORY OF HEIGHTS

被引:12
作者
FLYNN, EV
机构
关键词
D O I
10.2307/2154766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of explicitly determining the naive height constants for Jacobians of hyperelliptic curves. For genus > 1,it is impractical to apply Hilbert's Nullstellensatz directly to the defining equations of the duplication law; we indicate how this technical difficulty can be overcome by use of isogenies. The height constants are computed in detail for the Jacobian of an arbitrary curve of genus 2, and we apply the technique to compute generators of J(Q), the Mordell-Weil group for a selection of rank 1 examples.
引用
收藏
页码:3003 / 3015
页数:13
相关论文
共 13 条
[1]  
Bost J.-B., 1988, GAZ MATH, V38, P36
[2]  
CASSELS J. W. S., 1983, ARITHMETIC GEOMETRY, V1, P29
[3]  
CREMONA JE, 1992, ALGORITHMS MODULAR E
[4]   THE JACOBIAN AND FORMAL GROUP OF A CURVE OF GENUS-2 OVER AN ARBITRARY GROUND FIELD [J].
FLYNN, EV .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 107 :425-441
[5]   DESCENT VIA ISOGENY IN DIMENSION-2 [J].
FLYNN, EV .
ACTA ARITHMETICA, 1994, 66 (01) :23-43
[6]  
FLYNN EV, 1993, J REINE ANGEW MATH, V438, P45
[7]   COMPUTING THE MORDELL-WEIL RANK OF JACOBIANS OF CURVES OF GENUS-2 [J].
GORDON, DM ;
GRANT, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (02) :807-824
[8]  
HUDSON RWH, 1905, KUMMERS QUARTIC SURF
[9]   FIELDS OF LARGE TRANSCENDENCE DEGREE GENERATED BY VALUES OF ELLIPTIC FUNCTIONS [J].
MASSER, DW ;
WUSTHOLZ, G .
INVENTIONES MATHEMATICAE, 1983, 72 (03) :407-464
[10]  
Mumford D., 1983, PROGR MATH, V28