THE LARGEST PRIME DIVIDING THE MAXIMAL ORDER OF AN ELEMENT OF S-N

被引:7
作者
GRANTHAM, J
机构
关键词
D O I
10.2307/2153344
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define g(n) to be the maximal order of an element of the symmetric group on n elements. Results about the prime factorization of g(n) allow a reduction of the upper bound on the largest prime divisor of g(n) to 1.328 root n log n.
引用
收藏
页码:407 / 410
页数:4
相关论文
共 8 条
[1]  
LANDAU E, 1903, ARCH MATH PHYS, P92
[2]  
Massias J.-P., 1985, ANN FAC SCI TOULOUSE, V6, P269
[3]  
MASSIAS JP, 1989, MATH COMPUT, V53, P665, DOI 10.1090/S0025-5718-1989-0979940-4
[4]  
NICOLAS JL, 1969, REV FR INFORM RECH O, V3, P43
[5]  
NICOLAS JL, 1969, B SOC MATH FR, V97, P129
[6]  
NICOLAS JL, 1968, ACTA ARITH, V14, P315
[7]  
Rosser J. B., 1962, ILLINOIS J MATH, V6, P64
[8]   SHARPER BOUNDS FOR CHEBYSHEV FUNCTIONS THETA(CHI) AND PSI(CHI) .2. [J].
SCHOENFELD, L .
MATHEMATICS OF COMPUTATION, 1976, 30 (134) :337-360