CLIQUE COVERINGS OF THE EDGES OF A RANDOM GRAPH

被引:11
作者
BOLLOBAS, B
ERDOS, P
SPENCER, J
WEST, DB
机构
[1] COURANT INST,NEW YORK,NY
[2] LOUISIANA STATE UNIV,BATON ROUGE,LA 70803
[3] UNIV CAMBRIDGE,CAMBRIDGE,ENGLAND
[4] HUNGARIAN ACAD SCI,H-1361 BUDAPEST 5,HUNGARY
[5] UNIV ILLINOIS,URBANA,IL 61801
关键词
D O I
10.1007/BF01202786
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The edges of the random graph (with the edge probability p = 1/2) can be covered using O(n2 ln ln n/(ln n)2) cliques. Hence this is an upper bound on the intersection number (also called clique cover number) of the random graph. A lower bound, obtained by counting arguments, is (1 - epsilon)n2/(2 lg n)2.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 8 条
[1]  
BOLLOBAS B, 1988, COMBINATORICA, V8
[2]   REPRESENTATION OF A GRAPH BY SET INTERSECTIONS [J].
ERDOS, P ;
GOODMAN, AW ;
POSA, L .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (01) :106-&
[3]   A NOTE ON THE INTERVAL NUMBER OF A GRAPH [J].
ERDOS, P ;
WEST, DB .
DISCRETE MATHEMATICS, 1985, 55 (02) :129-133
[4]   EXTREMAL VALUES OF THE INTERVAL NUMBER OF A GRAPH [J].
GRIGGS, JR ;
WEST, DB .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01) :1-7
[5]   EXTREMAL VALUES OF THE INTERVAL NUMBER OF A GRAPH .2. [J].
GRIGGS, JR .
DISCRETE MATHEMATICS, 1979, 28 (01) :37-47
[6]  
Matula DW., 1976, LARGEST CLIQUE SIZE
[7]   ON THE INTERVAL NUMBER OF RANDOM GRAPHS [J].
SCHEINERMAN, ER .
DISCRETE MATHEMATICS, 1990, 82 (01) :105-109
[8]   AN IMPROVED EDGE BOUND ON THE INTERVAL NUMBER OF A GRAPH [J].
SPINRAD, JR ;
VIJAYAN, G ;
WEST, DB .
JOURNAL OF GRAPH THEORY, 1987, 11 (03) :447-449