MOTION OF LEVEL SETS BY MEAN-CURVATURE .2.

被引:154
作者
EVANS, LC [1 ]
SPRUCK, J [1 ]
机构
[1] UNIV MASSACHUSETTS,DEPT MATH,AMHERST,MA 01003
关键词
D O I
10.2307/2154167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of short time existence for the classical motion by mean curvature of a smooth hypersurface. Our method consists in studying a fully nonlinear uniformly parabolic equation satisfied by the signed distance function to the surface
引用
收藏
页码:321 / 332
页数:12
相关论文
共 6 条
[1]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[2]  
CHEN YG, 1991, J DIFFER GEOM, V33, P749
[3]   MOTION OF LEVEL SETS BY MEAN-CURVATURE .1. [J].
EVANS, LC ;
SPRUCK, J .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (03) :635-681
[4]  
GAGE M, 1986, J DIFFER GEOM, V23, P69
[5]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255
[6]  
Ladyzhenskaya O A, 1968, LINEAR QUASILINEAR E