TEST SPACES, DACEY SPACES, AND COMPLETENESS OF INNER-PRODUCT SPACES

被引:1
作者
DVURECENSKIJ, A
PULMANNOVA, S
机构
[1] Mathematical Institute, Slovak Academy of Sciences, Bratislava, SK-814 73
关键词
Mathematical Subject Classifications (1991): Primary: 46C15; Secondary:; 81P10; 03G12;
D O I
10.1007/BF00761140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a test space consisting of the unit sphere of a real or complex inner product space S and of the set all maximal orthonormal systems in S, is algebraic iff S is Dacey or, equivalently, iff S is complete. In addition, we present another completeness criterion.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 12 条
  • [1] Amemiya I., 1996, PUBL RES I MATH SCI, V2, P423
  • [2] CANETTI A, 1988, COMPLETENESS DACEY P
  • [3] CATTANEO G, 1987, B UNIONE MAT ITAL, V1B, P167
  • [4] COMPLETENESS OF INNER PRODUCT-SPACES AND QUANTUM LOGIC OF SPLITTING SUBSPACES
    DVURECENSKIJ, A
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (03) : 231 - 235
  • [5] Dvurecenskij A, 1993, GLEASONS THEOREM ITS
  • [6] TENSOR-PRODUCTS OF ORTHOALGEBRAS
    FOULIS, DJ
    BENNETT, MK
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (03): : 271 - 282
  • [7] OPERATIONAL STATISTICS .1. BASIC CONCEPTS
    FOULIS, DJ
    RANDALL, CH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (11) : 1667 - &
  • [8] FOULIS DJ, INT J THEOR PHYS, V31, P787
  • [9] Gudder S. P., 1988, QUANTUM PROBABILITY
  • [10] Kalmbach G., 1983, ORTHOMODULAR LATTICE