TRANSCENDENTAL ASPECTS OF THE RIEMANN-HILBERT CORRESPONDENCE

被引:10
作者
SIMPSON, CT
机构
[1] Princeton University, Princeton, NJ
关键词
D O I
10.1215/ijm/1255988271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:368 / 391
页数:24
相关论文
共 50 条
[32]   The Riemann-Hilbert problem [J].
Ramis, Jean-Pierre .
DIVERGENT SERIES, SUMMABILITY AND RESURGENCE I: MONODROMY AND RESURGENCE, 2016, 2153 :87-119
[33]   The Riemann-Hilbert Problem on the Riemann Surface [J].
Komech, Alexander ;
Merzon, Anatoli .
STATIONARY DIFFRACTION BY WEDGES: METHOD OF AUTOMORPHIC FUNCTIONS ON COMPLEX CHARACTERISTICS, 2019, 2249 :111-115
[34]   A RIEMANN-HILBERT PROBLEM IN A RIEMANN SURFACE [J].
Spyridon Kamvissis .
ActaMathematicaScientia, 2011, 31 (06) :2233-2246
[35]   The Riemann-Hilbert Correspondence for P3D6 Bundles [J].
Guest, Martin A. ;
Hertling, Claus .
PAINLEVE III: A CASE STUDY IN THE GEOMETRY OF MEROMORPHIC CONNECTIONS, 2017, 2198 :21-32
[36]   A RIEMANN-HILBERT PROBLEM IN A RIEMANN SURFACE [J].
Kamvissis, Spyridon .
ACTA MATHEMATICA SCIENTIA, 2011, 31 (06) :2233-2246
[37]   Rigidity and a Riemann-Hilbert correspondence for p-adic local systems [J].
Liu, Ruochuan ;
Zhu, Xinwen .
INVENTIONES MATHEMATICAE, 2017, 207 (01) :291-343
[38]   The Riemann-Hilbert Correspondence for Good Meromorphic Connections (Case of a Smooth Divisor) [J].
Sabbah, Claude .
INTRODUCTION TO STOKES STRUCTURES, 2013, 2060 :147-157
[39]   Backlund transformations of the sixth Painleve equation in terms of Riemann-Hilbert correspondence [J].
Inaba, M ;
Iwasaki, K ;
Saito, MH .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (01) :1-30
[40]   Derivative of the Riemann-Hilbert map [J].
Markovic, Vladimir ;
Tosic, Ognjen .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025,