DISCRETE CIRCLES, RINGS AND SPHERES

被引:62
作者
ANDRES, E
机构
[1] Centre de Recherche en Informatique, Université Louis Pasteur, 67084 Strasbourg Cédex, 7, rue René Descartes
关键词
D O I
10.1016/0097-8493(94)90164-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a new approach to discrete circles, rings, and an immediate extension to spheres. The circle, called arithmetical circle is defined by diophantine equations. The integer radius circles with the same centre pave the plane. It is easy to determine if a point is on, inside. or outside a circle. This was not easy to do with previous definitions of circles, like Bresenham's. We show that the arithmetical circle extends Bresenham's circle. We give an efficient incremental generation algorithm. The arithmetical circle has many extensions. We present briefly half-integer centered circles with a generation algorithm, 4-connected circles, and a general ring definition. We finish with the arithmetical sphere, an immediate 3D extension of arithmetical circle. We give elements to build a algorithm for generating the sphere.
引用
收藏
页码:695 / 706
页数:12
相关论文
共 33 条
[1]  
ANDRES E, 1992, THESIS U L PASTEUR S
[2]  
ANDRES E, 1994, PLAN DISCRET
[3]  
ANDRES E, 1989, CERCLE DISCRET
[4]  
BISWAS SN, 1985, COMPUT VISION GRAPH, V32, P158, DOI 10.1016/S0734-189X(85)80066-9
[5]   LINEAR ALGORITHM FOR INCREMENTAL DIGITAL DISPLAY OF CIRCULAR ARCS [J].
BRESENHAM, J .
COMMUNICATIONS OF THE ACM, 1977, 20 (02) :100-106
[6]   ALGORITHM FOR COMPUTER CONTROL OF A DIGITAL PLOTTER [J].
BRESENHAM, JE .
IBM SYSTEMS JOURNAL, 1965, 4 (01) :25-30
[7]  
BRESENHAM JE, 1985, ALGORITHM CIRCLE ARC, P213
[8]  
BRESENHAM JE, 1987, IEEE COMPUT GRAPH, P31
[9]   ALGORITHMS FOR DRAWING ANTIALIASED CIRCLES AND ELLIPSES [J].
FIELD, D .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 33 (01) :1-15
[10]  
FRANCON J, 1990, 115E ACT C NAT SOC S, P323