Optimal algorithms for computing the minimum distance between two finite planar sets

被引:17
作者
Toussaint, Godfried T. [1 ]
Bhattacharya, Binay K. [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2K6, Canada
[2] Simon Fraser Univ, Dept Comp Sci, Burnaby, BC V5A 1S6, Canada
关键词
Minimum distance between sets; cluster analysis; pattern recognition; coloring problems; convex polygons; algorithms; computational geometry; complexity;
D O I
10.1016/0167-8655(83)90041-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is shown in this paper that the minimum distance between two finite planar sets of n points can be computed in O(n log n) worst-case running time and that this is optimal to within a constant factor. Furthermore, when the sets form a convex polygon this complexity can be reduced to O(n).
引用
收藏
页码:79 / 82
页数:4
相关论文
共 14 条
[1]  
Avis D., 1980, P ALL C URB IL OCT 1
[2]  
Duda R.O., 1973, PATTERN CLASSIFICATI, P235
[3]  
Horspool R.N., 1979, SOCS7912 MCGILL U
[4]   ALL NEAREST-NEIGHBOR PROBLEM FOR CONVEX POLYGONS [J].
LEE, DT ;
PREPARATA, FP .
INFORMATION PROCESSING LETTERS, 1978, 7 (04) :189-192
[5]   2 ALGORITHMS FOR CONSTRUCTING A DELAUNAY TRIANGULATION [J].
LEE, DT ;
SCHACHTER, BJ .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1980, 9 (03) :219-242
[6]  
MATULA DW, 1980, GEOGR ANAL, V12, P205
[7]  
McKenna M., 1983, SOCS836 MCGILL U
[8]  
Shamos M. I., 1975, P 7 ANN ACM S THEORY, P224
[9]  
Shamos Michael I., 1978, THESIS YALE U
[10]  
Supowit K.J., 1983, JACM IN PRESS