LEFT K-COMPLETENESS IN QUASI-METRIC SPACES

被引:30
|
作者
ROMAGUERA, S
机构
[1] Escuela de Caminos, Departamento de Matemática Aplicada, Universidad Politécnica, Valencia
关键词
D O I
10.1002/mana.19921570103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regular left K-sequentially complete quasi-metric spaces are characterized. We deduce that these spaces are complete ARONSZAJN and that every metrizable space admitting a left K-sequentially complete quasi-metric is completely metrizable. We also characterize quasi-metric spaces having a quasi-metric left K-sequential completion in terms of certain bases of countable order.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 50 条
  • [21] On completion of fuzzy quasi-metric spaces
    Gregori, V
    Mascarell, JA
    Sapena, A
    TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) : 886 - 899
  • [22] Quasi-metric properties of complexity spaces
    Romaguera, S
    Schellekens, M
    TOPOLOGY AND ITS APPLICATIONS, 1999, 98 (1-3) : 311 - 322
  • [23] The monad on strong quasi-metric spaces
    Lu, Jing
    THEORETICAL COMPUTER SCIENCE, 2022, 912 : 99 - 108
  • [24] The bicompletion of fuzzy quasi-metric spaces
    Castro-Company, F.
    Romaguera, S.
    Tirado, P.
    FUZZY SETS AND SYSTEMS, 2011, 166 (01) : 56 - 64
  • [25] On statistical convergence in quasi-metric spaces
    Ilkhan, Merve
    Kara, Emrah Evren
    DEMONSTRATIO MATHEMATICA, 2019, 52 (01) : 225 - 236
  • [26] Expansive homeomorphisms on quasi-metric spaces
    Otafudu, Olivier olela
    Matladi, Dibona peggy
    Zweni, Mcedisi sphiwe
    APPLIED GENERAL TOPOLOGY, 2024, 25 (01): : 1 - 15
  • [27] On optimization problems in quasi-metric spaces
    Chen, Shao-Bai
    Li, Wen
    Tian, Sen-Ping
    Mao, Zong-Yuan
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 865 - +
  • [28] On bornology of extended quasi-metric spaces
    Otafudu, Olivier Olela
    Toko, Wilson B.
    Mukonda, Danny
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (06): : 1767 - 1777
  • [29] A REPRESENTATION THEOREM FOR QUASI-METRIC SPACES
    VITOLO, P
    TOPOLOGY AND ITS APPLICATIONS, 1995, 65 (01) : 101 - 104
  • [30] qλ-hyperconvexity in quasi-metric spaces
    Agyingi, Collins Amburo
    Gaba, Yae Ulrich
    AFRIKA MATEMATIKA, 2019, 30 (3-4) : 399 - 412