LEFT K-COMPLETENESS IN QUASI-METRIC SPACES

被引:31
作者
ROMAGUERA, S
机构
[1] Escuela de Caminos, Departamento de Matemática Aplicada, Universidad Politécnica, Valencia
关键词
D O I
10.1002/mana.19921570103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regular left K-sequentially complete quasi-metric spaces are characterized. We deduce that these spaces are complete ARONSZAJN and that every metrizable space admitting a left K-sequentially complete quasi-metric is completely metrizable. We also characterize quasi-metric spaces having a quasi-metric left K-sequential completion in terms of certain bases of countable order.
引用
收藏
页码:15 / 23
页数:9
相关论文
共 25 条
[1]  
BENTLEY HL, 1989, LECT NOTES COMPUT SC, V393, P278
[2]  
DEGROOT J, 1963, INDAG MATH, V25, P761
[3]  
DOITCHINOV D, 1988, TOPOLOGY ITS APPL, P127
[4]  
ENGELKING R, 1977, FUND MATH, V0094, P00049
[5]   ORTHOCOMPACTNESS AND STRONG CECH COMPLETENESS IN MOORE SPACES [J].
FLETCHER, P ;
LINDGREN, WF .
DUKE MATHEMATICAL JOURNAL, 1972, 39 (04) :753-766
[6]   CORRECTION [J].
FLETCHER, P .
DUKE MATHEMATICAL JOURNAL, 1973, 40 (04) :959-959
[7]  
Fletcher P., 1982, QUASI UNIFORM SPACES
[8]  
GREGORI V, 1985, MATH CHRONICLE, V14, P39
[9]  
Hicks T. L., 1988, MATH JAPON, V33, P231
[10]  
Ikeda Y., 1989, TOPOLOGY P, V14, P75