Stationary Bootstrap for U-Statistics under Strong Mixing

被引:2
作者
Hwang, Eunju [1 ]
Shin, Dong Wan [2 ]
机构
[1] Gachon Univ, Dept Appl Stat, Seongnam, South Korea
[2] Ewha Womans Univ, Dept Stat, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
Stationary bootstrap; U-statistic; strong mixing; strong consistency; weak consistency; Monte Carlo study;
D O I
10.5351/CSAM.2015.22.1.081
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Validity of the stationary bootstrap of Politis and Romano (1994) is proved for U-statistics under strong mixing. Weak and strong consistencies are established for the stationary bootstrap of U-statistics. The theory is applied to a symmetry test which is a U-statistic regarding a kernel density estimator. The theory enables the bootstrap confidence intervals of the means of the U-statistics. A Monte-Carlo experiment for bootstrap confidence intervals confirms the asymptotic theory.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 25 条