OPTIMIZATION OF FUNCTIONS WITH MANY MINIMA

被引:48
|
作者
BILBRO, GL
SNYDER, WE
机构
[1] Bowman Gray School of Medicine, MRI Radiology, Winston-Salem, NC 27103
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS | 1991年 / 21卷 / 04期
关键词
D O I
10.1109/21.108301
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A new numerical method for finding the global minimum of nonconvex functions is presented. The method is based on the principles of simulated annealing, but handles continuously valued variables in a natural way. The method is completely general, and optimizes functions of up to thirty variables. Several examples are presented. Finally, a general-purpose program, INTEROPT, is described, which finds the minimum of arbitrary functions, with user-friendly, quasi-natural-language input.
引用
收藏
页码:840 / 849
页数:10
相关论文
共 50 条
  • [1] AN IMPLICIT FILTERING ALGORITHM FOR OPTIMIZATION OF FUNCTIONS WITH MANY LOCAL MINIMA
    GILMORE, P
    KELLEY, CT
    SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (02) : 269 - 285
  • [2] A stochastic method for minimizing functions with many minima
    Ye, H
    Lin, ZP
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 289 - 296
  • [3] A hybrid algorithm for identifying global and local minima when optimizing functions with many minima
    Salhi, S
    Queen, NM
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 155 (01) : 51 - 67
  • [4] On estimates of minima of criterion functions in optimization on combinations
    Emets O.A.
    Roskladka A.A.
    Ukrainian Mathematical Journal, 1999, 51 (8) : 1262 - 1265
  • [5] Parallel deterministic and stochastic global minimization of functions with very many minima
    Easterling, David R.
    Watson, Layne T.
    Madigan, Michael L.
    Castle, Brent S.
    Trosset, Michael W.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 57 (02) : 469 - 492
  • [6] Parallel deterministic and stochastic global minimization of functions with very many minima
    David R. Easterling
    Layne T. Watson
    Michael L. Madigan
    Brent S. Castle
    Michael W. Trosset
    Computational Optimization and Applications, 2014, 57 : 469 - 492
  • [7] Local minima, marginal functions, and separating hyperplanes in discrete optimization
    Kiselman, Christer O.
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (1-2) : 49 - 52
  • [8] Search for common minima in joint optimization of multiple cost functions
    Adachi, Daiki
    Tsujimoto, Naoto
    Akashi, Ryosuke
    Todo, Synge
    Tsuneyuki, Shinji
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 241 : 92 - 97
  • [9] Minima of functions of lines
    LeStourgeon, Elizabeth
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1920, 21 (1-4) : 357 - 383
  • [10] On minima of discrimination functions
    Kujala, Janne V.
    Dzhafarov, Ehtibar N.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2008, 52 (02) : 116 - 127