共 50 条
LOCAL ASYMPTOTIC NORMALITY FOR AUTOREGRESSION WITH INFINITE-ORDER
被引:16
作者:
KREISS, JP
[1
]
机构:
[1] UNIV HAMBURG,INST MATH STOCHASTIK,W-2000 HAMBURG 13,GERMANY
关键词:
adaptation;
Autoregressive process;
local asymptotically minimax;
local asymptotically normal;
parameter estimation;
simulation;
D O I:
10.1016/0378-3758(90)90126-F
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider families of real valued random variables which form a stationary autoregressive process with infinite order. Using a certain local parametrization we are able to establish that such models are locally asymptotically normal. This property admits (using well-known results) a characterization and a construction of local asymptotically minimax estimates for a finite dimensional subparameter of the model. Finally we will show that even adaptive estimation is possible. © 1990.
引用
收藏
页码:185 / 219
页数:35
相关论文
共 50 条