Adaptive Synchronization of Diffusively Coupled Systems

被引:13
作者
Shafi, S. Yusef [1 ]
Arcak, Murat [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2015年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
Adaptive control; distributed algorithms/control; networked control systems; nonlinear systems;
D O I
10.1109/TCNS.2014.2378872
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an adaptive algorithm that guarantees synchronization in diffusively coupled systems. We first consider compartmental systems of ODEs where variables in each compartment are interconnected through diffusion terms with like variables in other compartments. Each set of variables may have its own weighted undirected graph describing the topology of the interconnection between compartments. The link weights are updated adaptively according to the magnitude of the difference between neighboring agents connected by each link. We show that an incremental passivity property is fundamental in guaranteeing output synchronization. We next consider reaction-diffusion PDEs with Neumann boundary conditions and derive an analogous algorithm guaranteeing spatial homogenization of the solutions. We provide several numerical examples demonstrating the results.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 52 条
  • [1] Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems
    Arcak, Murat
    [J]. AUTOMATICA, 2011, 47 (06) : 1219 - 1229
  • [2] Emergence of structural patterns out of synchronization in networks with competitive interactions
    Assenza, Salvatore
    Gutierrez, Ricardo
    Gomez-Gardenes, Jesus
    Latora, Vito
    Boccaletti, Stefano
    [J]. SCIENTIFIC REPORTS, 2011, 1
  • [3] Evolving dynamical networks
    Belykh, Igor
    di Bernardo, Mario
    Kurths, Juergen
    Porfiri, Maurizio
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 267 : 1 - 6
  • [4] Bohm M, 1998, SIAM J CONTROL OPTIM, V36, P33, DOI 10.1137/S0363012995279717
  • [5] On Exponential Synchronization of Kuramoto Oscillators
    Chopra, Nikhil
    Spong, Mark W.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 353 - 357
  • [6] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112
  • [7] Pinning control of complex networks via edge snapping
    DeLellis, P.
    di Bernardo, M.
    Porfiri, M.
    [J]. CHAOS, 2011, 21 (03)
  • [8] On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks
    DeLellis, Pietro
    di Bernardo, Mario
    Russo, Giovanni
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (03) : 576 - 583
  • [9] Evolution of Complex Networks via Edge Snapping
    DeLellis, Pietro
    diBernardo, Mario
    Garofalo, Franco
    Porfiri, Maurizio
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (08) : 2132 - 2143
  • [10] Synchronization and Control of Complex Networks via Contraction, Adaptation and Evolution
    DeLellis, Pietro
    di Bernardo, Mario
    Gorochowski, Thomas E.
    Russo, Giovanni
    [J]. IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2010, 10 (03) : 64 - 82