Jordan Higher Derivations of Triangular Algebras

被引:0
作者
Yang, Aili [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Sci, Xian 710054, Peoples R China
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2015年 / 53卷 / 01期
关键词
Jordan higher derivations; higher derivations; triangular algebras;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we prove that every Jordan higher derivation of triangular algebras is a higher derivation.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 11 条
[1]   Jordan derivations and antiderivations on triangular matrices [J].
Benkovic, D .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 397 :235-244
[2]  
Breear M., 1988, P AM MATH SOC, V104, P1003
[3]  
Cheng X. H., 2007, ARXIV07061942VMATHRA
[4]   Commuting maps of triangular algebras [J].
Cheung, WS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :117-127
[5]  
El-Maghrabi A. I., 2013, INT J MATH COMPUTATI, V18, P85
[6]  
EL-Maghrabi A. I., 2012, INT J MATH COMPUTATI, V17, P52
[7]  
Ferrero M., 2002, QUAEST MATH, V25, P249, DOI DOI 10.2989/16073600209486012
[8]   CLASSICAL EQUATIONS FOR QUANTUM-SYSTEMS [J].
GELLMANN, M ;
HARTLE, JB .
PHYSICAL REVIEW D, 1993, 47 (08) :3345-3382
[9]  
Ji P., 2006, LIEAR ALGEBRA APPL, V419, P251
[10]   Jordan higher derivations on triangular algebras [J].
Xiao, Zhankui ;
Wei, Feng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) :2615-2622