PERTURBED W-ALGEBRAS AND AFFINE TODA THEORIES

被引:9
|
作者
PALLA, L [1 ]
机构
[1] UNIV DURHAM, DEPT MATH SCI, DURHAM DH1 3LE, ENGLAND
关键词
D O I
10.1016/0550-3213(90)90546-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The relation between affine Toda theories and perturbed W-algebras, suggested earlier in the literature, is investigated further both in the classical and in the quantum theory. In the classical theory some evidence is found pointing to a close relationship between the conserved currents of the affine Toda theory and the currents of the classical W-algebras. In the quantum theory we point out that if the minimal WAn-1 and WBn models are perturbed according to the picture provided by the affine Toda theory, then several currents of these algebras remain conserved including the classically unseen fermionic current of WBn. © 1990.
引用
收藏
页码:714 / 741
页数:28
相关论文
共 50 条
  • [11] DUALITY IN QUANTUM TODA THEORY AND W-ALGEBRAS
    KAUSCH, HG
    WATTS, GMT
    NUCLEAR PHYSICS B, 1992, 386 (01) : 166 - 190
  • [12] INTEGRABILITY OF CLASSICAL AFFINE W-ALGEBRAS
    ALBERTO DE SOLE
    MAMUKA JIBLADZE
    VICTOR G. KAC
    DANIELE VALERI
    Transformation Groups, 2021, 26 : 479 - 500
  • [13] Geometric Properties of W-Algebras and the Toda model
    S. A. Apikyan
    M. H. Barsamian
    C. J. Efthimiou
    Theoretical and Mathematical Physics, 2004, 138 : 151 - 162
  • [14] Finite vs affine W-algebras
    De Sole, Alberto
    Kac, Victor G.
    JAPANESE JOURNAL OF MATHEMATICS, 2006, 1 (01): : 137 - 261
  • [15] INTEGRABILITY OF CLASSICAL AFFINE W-ALGEBRAS
    Sole, Alberto De
    Kac, Victor G.
    Jibladze, Mamuka
    Valeri, Daniele
    TRANSFORMATION GROUPS, 2021, 26 (02) : 479 - 500
  • [16] Finite vs affine W-algebras
    Alberto De Sole
    Victor G. Kac
    Japanese Journal of Mathematics, 2006, 1 : 137 - 261
  • [17] TOWARDS A CLASSIFICATION OF W-ALGEBRAS ARISING FROM NON-ABELIAN TODA THEORIES
    DELDUC, F
    RAGOUCY, E
    SORBA, P
    PHYSICS LETTERS B, 1992, 279 (3-4) : 319 - 325
  • [18] Quantum affine algebras and deformations of the Virasoro and W-algebras
    Frenkel, E
    Reshetikhin, N
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (01) : 237 - 264
  • [19] W-algebras for Argyres–Douglas theories
    Creutzig T.
    European Journal of Mathematics, 2017, 3 (3) : 659 - 690
  • [20] W-algebras for non-abelian Toda systems
    Nirov, KS
    Razumov, AV
    JOURNAL OF GEOMETRY AND PHYSICS, 2003, 48 (04) : 505 - 545