DIFFERENCE-METHODS FOR SOLVING CONVECTION DIFFUSION-EQUATIONS

被引:15
作者
BIRKHOFF, G
GARTLAND, EC
LYNCH, RE
机构
[1] KENT STATE UNIV,DEPT MATH,KENT,OH 44242
[2] PURDUE UNIV,DEPT COMP SCI,W LAFAYETTE,IN 47907
[3] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
D O I
10.1016/0898-1221(90)90158-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Difference methods for solving the convection-diffusion equation are discussed. The superiority of Allen's approximation over central or upwind differences for one-dimensional problems is confirmed, the superiority being greatest when the boundary layer is very thin. Higher order methods give improved accuracy with negligible increase in cost. A new iterative scheme is proposed for the two-dimensional problem, which requires orders of magnitude fewer arithmetic operations than existing procedures currently available in the literature. © 1990.
引用
收藏
页码:147 / 160
页数:14
相关论文
共 28 条
[1]  
Allen D.N.deG., 1955, QUART J MECH APPL MA, V8, P129, DOI DOI 10.1093/QJMAM/8.2.129
[2]  
ALLEN DND, 1962, Q J MECH APPL MATH, V15, P11
[3]  
AXELSSON O, 7712R CHALM U TECHN
[4]  
BERGER AE, 1981, MATH COMPUT, V37, P79, DOI 10.1090/S0025-5718-1981-0616361-0
[5]   OPTIMAL FEW-POINT DISCRETIZATIONS OF LINEAR SOURCE PROBLEMS [J].
BIRKHOFF, G ;
GULATI, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1974, 11 (04) :700-728
[6]  
Birkhoff G., 1984, NUMERICAL SOLUTION E
[7]  
Carrier G.F., 1976, PARTIAL DIFFERENTIAL
[8]  
Conte C.D.B. S. D., 2017, SOC INDUS APPL MATH
[9]  
DENNIS S. C. R., 1960, Q J MECH APPL MATH, VXIII, P487
[10]   CONSTRUCTION OF FINITE-DIFFERENCE APPROXIMATIONS TO ORDINARY DIFFERENTIAL-EQUATIONS [J].
DOEDEL, EJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (03) :450-465