Transfer Learning from Synthetic Data Applied to Soil-Root Segmentation in X-Ray Tomography Images

被引:44
作者
Douarre, Clement [1 ]
Schielein, Richard [2 ]
Frindel, Carole [3 ]
Gerth, Stefan [2 ]
Rousseau, David [1 ]
机构
[1] Univ Angers, UMR, INRA, IRHS,Laris, F-49000 Angers, France
[2] Univ Angers, UMR INRA IRHS, Laris, 62 Ave Notre Dame Lac, F-49000 Angers, France
[3] Fraunhofer Inst Integrated Syst IIS, Dev Ctr Xray Technol EZRT, Flugplatzstr 75, D-90768 Furth, Germany
关键词
root systems; segmentation; X-ray tomography; transfer learning;
D O I
10.3390/jimaging4050065
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
One of the most challenging computer vision problems in the plant sciences is the segmentation of roots and soil in X-ray tomography. So far, this has been addressed using classical image analysis methods. In this paper, we address this soil-root segmentation problem in X-ray tomography using a variant of supervised deep learning-based classification called transfer learning where the learning stage is based on simulated data. The robustness of this technique, tested for the first time with this plant science problem, is established using soil-roots with very low contrast in X-ray tomography. We also demonstrate the possibility of efficiently segmenting the root from the soil while learning using purely synthetic soil and roots.
引用
收藏
页数:14
相关论文
共 34 条
  • [1] Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification
    Arganda-Carreras, Ignacio
    Kaynig, Verena
    Rueden, Curtis
    Eliceiri, Kevin W.
    Schindelin, Johannes
    Cardona, Albert
    Seung, H. Sebastian
    [J]. BIOINFORMATICS, 2017, 33 (15) : 2424 - 2426
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] Data synthesis methods for semantic segmentation in agriculture: A Capsicum annuum dataset
    Barth, R.
    IJsselmuiden, J.
    Hemming, J.
    Van Henten, E. J.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 144 : 284 - 296
  • [4] Benoit L., 2014, P COMP VIS ECCV 2014, V21, P131
  • [5] Simulation of image acquisition in machine vision dedicated to seedling elongation to validate image processing root segmentation algorithms
    Benoit, Landry
    Rousseau, David
    Belin, Etienne
    Demilly, Didier
    Chapeau-Blondeau, Francois
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2014, 104 : 84 - 92
  • [6] Fractal structure in the color distribution of natural images
    Chapeau-Blondeau, Francois
    Chauveau, Julien
    Rousseau, David
    Richard, Paul
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 42 (01) : 472 - 482
  • [7] The devil is in the details: an evaluation of recent feature encoding methods
    Chatfield, Ken
    Lempitsky, Victor
    Vedaldi, Andrea
    Zisserman, Andrew
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [8] Fractal capacity dimension of three-dimensional histogram from color images
    Chauveau, Julien
    Rousseau, David
    Chapeau-Blondeau, Francois
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2010, 21 (02) : 197 - 211
  • [9] Multiscale analysis of depth images from natural scenes: Scaling in the depth of the woods
    Chene, Yann
    Belin, Etienne
    Rousseau, David
    Chapeau-Blondeau, Francois
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 54 : 135 - 149
  • [10] Flandrin, 1998, TIME FREQUENCYTIME S