True self-avoiding walks on fractal lattices above the upper marginal dimension

被引:2
作者
Lee, SB [1 ]
Woo, KY [1 ]
机构
[1] PURDUE UNIV,DEPT PHYS,W LAFAYETTE,IN 47907
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 24期
关键词
D O I
10.1088/0305-4470/28/24/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study by Monte Carlo simulations the critical behaviour and the cross-over scaling of the true self-avoiding walks (TSAW) On fractal lattices above the upper marginal dimension. We estimate the Flory exponent upsilon which characterizes the RMS end-to-end distances of TSAW on a percolation cluster at percolation thresholds both in three and four dimensions and on a DLA cluster in three dimensions. Results were in good agreement with the predictions of the known Flory formulae. We also discuss the fractal-to-Euclidean and the RW-to-TSAW cross-over scaling. Monte Carlo data appear to collapse in the scaling regions for both cases; however, we found that the scaling function for the latter is different from that on the regular lattices.
引用
收藏
页码:7065 / 7077
页数:13
相关论文
共 28 条
[1]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[2]   ASYMPTOTIC-BEHAVIOR OF THE TRUE SELF-AVOIDING WALK [J].
AMIT, DJ ;
PARISI, G ;
PELITI, L .
PHYSICAL REVIEW B, 1983, 27 (03) :1635-1645
[3]   TRUE SELF-AVOIDING WALK IN ONE DIMENSION [J].
BERNASCONI, J ;
PIETRONERO, L .
PHYSICAL REVIEW B, 1984, 29 (09) :5196-5198
[4]   FLORY FORMULA AS AN EXTENDED LAW OF LARGE NUMBERS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICAL REVIEW B, 1989, 39 (04) :2846-2849
[5]   TRUE SELF-AVOIDING WALK ON FRACTALS [J].
DAURIAC, JCA ;
RAMMAL, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (01) :L15-L20
[6]  
de Gennes P.-G, 1979, SCALING CONCEPTS POL
[7]  
De Gennes PG, 1976, RECHERCHE, V7, P919
[8]   CLASSICAL DIFFUSION ON EDEN TREES [J].
DHAR, D ;
RAMASWAMY, R .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1346-1349
[9]   EXPERIMENTAL REALIZATION OF TRUE SELF-AVOIDING WALKS [J].
FAMILY, F ;
DAOUD, M .
PHYSICAL REVIEW B, 1984, 29 (03) :1506-1507
[10]   SPREADING OF PERCOLATION IN 3 AND 4 DIMENSIONS [J].
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09) :1681-1689