RIGOROUS COMPUTATIONAL SHADOWING OF ORBITS OF ORDINARY DIFFERENTIAL-EQUATIONS

被引:32
作者
COOMES, BA
KOCAK, H
PALMER, KJ
机构
[1] Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida
关键词
D O I
10.1007/s002110050100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a true orbit near a numerically computed approximate orbit - shadowing - of autonomous system of ordinary differential equations is investigated. A general shadowing theorem for finite time, which guarantees the existence of shadowing in ordinary differential equations and provides error bounds for the distance between the true and the approximate orbit in terms of computable quantities, is proved. The practical use and the effectiveness of this theorem is demonstrated in the numerical computations of chaotic orbits of the Lorenz equations.
引用
收藏
页码:401 / 421
页数:21
相关论文
共 16 条
[1]  
[Anonymous], 1991, FUNCTIONAL ANAL
[2]  
CHOW SN, 1994, IN PRESS SIAM J SCI, V15
[3]  
COOMES BA, IN PRESS J COMP APPL
[4]   SOLVING ORDINARY DIFFERENTIAL-EQUATIONS USING TAYLOR-SERIES [J].
CORLISS, G ;
CHANG, YF .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02) :114-144
[5]   HYPERBOLICITY AND CHAIN RECURRENCE [J].
FRANKE, JE ;
SELGRADE, JF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (01) :27-36
[6]  
Hammel S. M., 1987, Journal of Complexity, V3, P136, DOI 10.1016/0885-064X(87)90024-0
[7]   NUMERICAL ORBITS OF CHAOTIC PROCESSES REPRESENT TRUE ORBITS [J].
HAMMEL, SM ;
YORKE, JA ;
GREBOGI, C .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 19 (02) :465-469
[8]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[9]  
2
[10]   RIGOROUS VERIFICATION OF TRAJECTORIES FOR THE COMPUTER-SIMULATION OF DYNAMIC-SYSTEMS [J].
SAUER, T ;
YORKE, JA .
NONLINEARITY, 1991, 4 (03) :961-979