GLOBAL-SOLUTIONS AND STABLE GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS

被引:6
作者
STUBBE, J
机构
[1] Département de Physique Théorique, Université de Genève, CH-1211 Genève, 24, quai Ernest-Ansermet
来源
PHYSICA D | 1991年 / 48卷 / 2-3期
关键词
D O I
10.1016/0167-2789(91)90087-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
I present a new method to obtain sufficient conditions for the global existence of solutions of nonlinear Schrodinger equations with focusing nonlinearities. It turns out that the regime of global solutions is essentially determined by the ground state solutions of these equations. In particular, I can show that the orbital stability of certain ground states implies the global existence of all solutions. Furthermore sharp conditions for the global existence of sufficiently small solutions are derived.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 41 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[3]  
BIALYNICKIBIRUL.I, 1976, ANN PHYS-NEW YORK, V100, P62
[4]  
BLANCHARD P, 1989, LECT NOTES PHYS, V347, P19
[5]  
BLANCHARD P, 1987, ANN I H POINCARE-PHY, V47, P309
[6]  
BURT PB, 1981, QUANTUM MECHANICS NO
[7]   THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1 [J].
CAZENAVE, T ;
WEISSLER, FB .
MANUSCRIPTA MATHEMATICA, 1988, 61 (04) :477-494
[8]   STABLE-SOLUTIONS OF THE LOGARITHMIC SCHRODINGER-EQUATION [J].
CAZENAVE, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (10) :1127-1140
[9]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[10]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130