STEADY FLOW OF A MICROPOLAR FLUID DUE TO A ROTATING-DISK

被引:24
作者
GURAM, GS
ANWAR, M
机构
[1] Department of Applied Mathematics, University of Western Ontario, London, N6A 5B9, Ontario
关键词
D O I
10.1007/BF00036671
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional, axially-symmetric, steady flow of a micropolar fluid, due to a rotating disc, is considered. The resulting equations of motion are solved numerically, for four different combinations of the six parameters involved, using the Gauss-Seidel iterative procedure and Simpson's rule. Results are presented both in tabular and graphical form. © 1979 Sijthoff & Noordhoff International Publishers.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 9 条
[1]   STEADY AND PULSATILE FLOW OF BLOOD [J].
ARIMAN, T ;
TURK, MA ;
SYLVESTE.ND .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1974, 41 (01) :1-7
[2]   APPLICATIONS OF MICROCONTINUUM FLUID MECHANICS [J].
ARIMAN, T ;
TURK, MA ;
SYLVESTER, ND .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1974, 12 (04) :273-293
[3]   The flow due to a rotating disc. [J].
Cochran, WG .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1934, 30 :365-375
[4]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[5]  
GERALD CF, 1974, APPLIED NUMERICAL AN
[6]  
GURAM GS, 1976, UTILITAS MATHEMATICA, V9, P147
[7]   WAVE PROPAGATION IN NEMATIC LIQUID CRYSTALS [J].
LEE, JD ;
ERINGEN, AC .
JOURNAL OF CHEMICAL PHYSICS, 1971, 54 (12) :5027-&
[8]  
Milne WE, 1953, NUMERICAL SOLUTION D
[9]  
von Karman T, 1921, Z ANGEW MATH MECH, V1, P233