THE ANHARMONIC-OSCILLATOR WITH VARIABLE DAMPING

被引:0
作者
CERVERO, JM [1 ]
GORDOA, PR [1 ]
ESTEVEZ, PG [1 ]
机构
[1] CSIC,INST ESTRUCTURA MAT,E-28006 MADRID,SPAIN
关键词
D O I
10.1006/jsvi.1993.1330
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A thorough analysis on the integrability of the anharmonic oscillator with variable damping coefficients is carried out. Using Painlevé analysis we find the most general form of the damping that allows for integrability of the oscillator. We present a novel method that yields exact and explicit solutions. These solutions are presented and classified. The method could eventually be used for generating more solutions for other values of the critical parameters. © 1993 Academic Press Limited.
引用
收藏
页码:203 / 208
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 1989, CHAOS INTEGRABILITY
[2]  
BYRD PF, 1970, HDB ELLIPTIC INTEGRA
[3]   GENERAL ELLIPTIC SOLUTION FOR THE CUBIC EQUATION WITH DAMPING [J].
CERVERO, JM ;
ESTEVEZ, PG .
PHYSICS LETTERS A, 1986, 114 (8-9) :435-436
[4]  
CERVERO JM, 1990, P NATO ASI C, V310, P573
[5]   THE GENERALIZED DAMPED CUBIC EQUATION - INTEGRABILITY AND GENERAL-SOLUTION [J].
ESTEVEZ, PG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (05) :1153-1155
[6]   PAINLEVE ANALYSIS OF THE GENERALIZED BURGERS-HUXLEY EQUATION [J].
ESTEVEZ, PG ;
GORDOA, PR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4831-4837
[7]  
ESTEVEZ PG, 1989, ACTA PHYS POL B, V20, P829
[8]  
HEREMAN W, 1989, CMS8923 U WISC REP
[9]  
Ince E.L., 1956, ORDINARY DIFFERENTIA
[10]  
KEENER JP, 1986, TEMPORAL DISORDER HU