Solving redundancy optimisation problem with social emotional optimisation algorithm

被引:0
|
作者
Yang, Chunxia [1 ]
Chen, Lichao [2 ]
Cui, Zhihua [3 ,4 ]
机构
[1] Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Sci & Technol, Sch Comp Sci & Technol, Taiyuan 030024, Shanxi, Peoples R China
[3] Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China
[4] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
social emotional optimisation algorithm; SEOA; BP neural network; redundancy optimisation problem;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Social emotional optimisation algorithm (SEOA) is a new swarm intelligent technique to stimulate human behaviours. However, up to date, there are few applications. Therefore, in this paper, SEOA is successfully applied to the redundancy optimisation problem. The objective of the redundancy allocation problem is to select from available components and to determine an optimal design configuration to maximise system reliability. BP neural network is trained to calculate the objective fitness, while SEOA is applied to check the best choice of feasibility of solution. One example is used to illustrate the effectiveness of SEOA.
引用
收藏
页码:320 / 326
页数:7
相关论文
共 50 条
  • [1] Social emotional optimisation algorithm for reactive power optimisation
    Wei Z.-H.
    Liu Y.
    Zhao G.-X.
    Song Y.-B.
    Wei, Zhan-Hong (wwwzhh-85@163.com), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10): : 351 - 360
  • [2] Social emotional optimisation algorithm with emotional model
    Wei, Zhanhong
    Cui, Zhihua
    Zeng, Jianchao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2012, 7 (02) : 125 - 132
  • [3] A novel social emotional optimisation algorithm for IIR system identification problem
    Upadhyay, Prashant
    Kar, Rajib
    Mandal, Durbadal
    Ghoshal, Sakti Prasad
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2014, 22 (01) : 80 - 112
  • [4] An efficient algorithm for solving the system optimisation problem in transportation
    Han Yun-xiang
    Huang Xiao-qiong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (05) : 878 - 885
  • [5] Time-varying social emotional optimisation algorithm
    Liu, Yanchun
    Xu, Zhendong
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2012, 3 (04) : 376 - 384
  • [6] Alligator optimisation algorithm for solving unconstrainted optimisation problems
    Tan, Weng-Hooi
    Mohamad-Saleh, Junita
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 21 (01) : 11 - 25
  • [7] Solving route optimisation problem in logistics distribution through an improved ant colony optimisation algorithm
    Zhang G.
    Zhang, Gailian (zhglian@126.com), 2017, Inderscience Enterprises Ltd. (08) : 218 - 230
  • [8] Hybrid optimisation algorithm for solving the multi-level spare parts inventory optimisation problem
    Gu, Tao
    Li, Sujian
    Kou, Zhenzhen
    Wu, Xiuli
    IET COLLABORATIVE INTELLIGENT MANUFACTURING, 2020, 2 (01) : 14 - 21
  • [9] Solving an assembly sequence optimisation problem using the genetic algorithm
    Alharbi, Fawaz
    Wang, Qian
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, CONTROL, OPTIMIZATION AND COMPUTER SCIENCE (ICECOCS), 2018,
  • [10] An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem
    D'Acierno, Luca
    Gallo, Mariano
    Montella, Bruno
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 217 (02) : 459 - 469