ON EXISTENCE OF NODAL SOLUTION TO ELLIPTIC EQUATIONS WITH CONVEX-CONCAVE NONLINEARITIES

被引:4
作者
Bobkov, V. E. [1 ]
机构
[1] RAS, CS USC, Inst Math, Chernyshevskii Str 112, Ufa 450008, Russia
来源
UFA MATHEMATICAL JOURNAL | 2013年 / 5卷 / 02期
关键词
nodal solution; convex-concave nonlinearity; fibering method;
D O I
10.13108/2013-5-2-18
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a bounded connected domain Omega subset of R-N, N >= 1 , with a smooth boundary, we consider the Dirichlet boundary value problem for elliptic equation with a convex -concave nonlinearity {-Delta u = lambda vertical bar u vertical bar(q-2)u + vertical bar u vertical bar(gamma-2)u, x is an element of Omega u vertical bar(delta Omega) = 0, where 1 < q < 2 < gamma < 2*. As a main result, we prove the existence of a nodal solution to this equation on the nonlocal interval lambda is an element of (-infinity, lambda(*)(0)), where lambda(*)(0) is determined by the variational principle of nonlinear spectral analysis via fibering method.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 21 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[4]   Nodal solutions for a sublinear elliptic equation [J].
Balabane, M ;
Dolbeault, J ;
Ounaies, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (01) :219-237
[5]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[6]  
BARTSCH T., 2003, TOPOL METHOD NONL AN, V22, P1
[7]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[8]   A DIRICHLET PROBLEM INVOLVING CRITICAL EXPONENTS [J].
BOCCARDO, L ;
ESCOBEDO, M ;
PERAL, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (11) :1639-1648
[9]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[10]  
Cazenave T., 1999, RENDICONTI MATEMAT 7, V19, P211