DIVISION AND BIT-SERIAL MULTIPLICATION OVER GF(QM)

被引:38
作者
HASAN, MA
BHARGAVA, VK
机构
来源
IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES | 1992年 / 139卷 / 03期
关键词
MATHEMATICAL TECHNIQUES;
D O I
10.1049/ip-e.1992.0036
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Division and bit-serial multiplication in finite fields are considered. Using co-ordinates of the supporting elements it is shown that, when field elements are represented by polynomials, division over GF(q(m)) can be performed by solving a system of m linear equations over GF(q). For a canonical basis representation, a relationship between the division and the discrete-time Wiener-Hopf equation of degree m over GF(q) is derived. This relationship leads to a bit-serial multiplication scheme that can be easily realised for all irreducible polynomials.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 7 条
[1]   BIT-SERIAL REED-SOLOMON ENCODERS [J].
BERLEKAMP, ER .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (06) :869-874
[2]  
McEliece R.J., 1987, FINITE FIELDS COMPUT, V1st, DOI [10.1007/978-1-4613-1983-2, DOI 10.1007/978-1-4613-1983-2]
[3]   EFFICIENT BIT-SERIAL MULTIPLICATION AND THE DISCRETE-TIME WIENER-HOPF EQUATION OVER FINITE-FIELDS [J].
MORII, M ;
KASAHARA, M ;
WHITING, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) :1177-1183
[4]  
Peterson William Wesley, 1972, ERROR CORRECTING COD
[5]   AN ALGORITHM FOR SOLVING DISCRETE-TIME WIENER - HOPF EQUATIONS BASED UPON EUCLIDS ALGORITHM [J].
SUGIYAMA, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (03) :394-409
[6]  
TRENCH WF, 1964, J SIAM, V12, P512
[7]   BIT SERIAL MULTIPLICATION IN FINITE-FIELDS [J].
WANG, MH ;
BLAKE, IF .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (01) :140-148