Gibbs Sampling for Double Seasonal Autoregressive Models

被引:12
作者
Amin, Ayman A. [1 ]
Ismail, Mohamed A. [2 ]
机构
[1] Munofia Univ, Dept Math Stat & Insurance, Cairo, Egypt
[2] Cairo Univ, Fac Econ & Polit Sci, Dept Stat, Giza, Egypt
关键词
multiplicative seasonal autoregressive; double seasonality; Bayesian analysis; Gibbs sampler; internet traffic data;
D O I
10.5351/CSAM.2015.22.6.557
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR) model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to approximate empirically the marginal posterior distributions after showing that the conditional posterior distribution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.
引用
收藏
页码:557 / 573
页数:17
相关论文
共 25 条