MINIMAL-SURFACES AND SOBOLEV GRADIENTS

被引:32
|
作者
RENKA, RJ [1 ]
NEUBERGER, JW [1 ]
机构
[1] UNIV N TEXAS,DEPT MATH,DENTON,TX 76203
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1995年 / 16卷 / 06期
关键词
CONJUGATE GRADIENTS; MINIMAL SURFACE; PRECONDITIONING; SOBOLEV GRADIENT; STEEPEST DESCENT; VARIABLE METRIC METHOD;
D O I
10.1137/0916082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We treat the problem of computing triangle-based piecewise linear approximations to parametric minimal surfaces in R(3). More specifically, given a triangulation T of the unit square Omega and a function f(0) from the nodes of T into R(3), We Seek a function f from the nodes of T into R(3) such that f agrees with f(0) on the boundary of Omega, and the triangulated surface area corresponding to the image of f is minimal. We employ a descent method in which, at each iteration, the gradient of the surface area functional is computed with respect to an inner product that depends on the current approximation to f. Test results: show that, starting with extremely poor initial estimates, a few descent iterations produce approximations in the vicinity of the solution. We also introduce a new characterization of minimal surfaces that eliminates the potential problem of triangle areas approaching zero. In place of the surface area functional, we minimize a functional whose critical points are uniformly parameterized minimal surfaces. This not only results in rapid convergence of the descent method, but also simplifies the expressions for gradients and Hessians.
引用
收藏
页码:1412 / 1427
页数:16
相关论文
共 50 条
  • [1] MINIMAL-SURFACES
    CLIBORN, JH
    JORDAN, B
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04): : 376 - 376
  • [2] COMPUTATION OF MINIMAL-SURFACES
    TERRONES, H
    JOURNAL DE PHYSIQUE, 1990, 51 (23): : C7345 - C7362
  • [3] MINIMAL-SURFACES IN SPHERES
    MICHELSOHN, ML
    ASTERISQUE, 1987, (154-55) : 115 - 130
  • [4] GENERIC MINIMAL-SURFACES
    ASPERTI, AC
    MATHEMATISCHE ZEITSCHRIFT, 1989, 200 (02) : 181 - 186
  • [5] AFFINE MINIMAL-SURFACES
    TERNG, CL
    ANNALS OF MATHEMATICS STUDIES, 1983, (103): : 207 - 216
  • [6] RELATIVISTIC MINIMAL-SURFACES
    HOPPE, J
    NICOLAI, H
    PHYSICS LETTERS B, 1987, 196 (04) : 451 - 455
  • [7] PERIODIC MINIMAL-SURFACES
    MACKAY, AL
    PHYSICA B & C, 1985, 131 (1-3): : 300 - 305
  • [8] PERIODIC MINIMAL-SURFACES
    MACKAY, AL
    NATURE, 1985, 314 (6012) : 604 - 606
  • [9] MACSYMA AND MINIMAL-SURFACES
    CONCUS, P
    MIRANDA, M
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 44 : 163 - 169
  • [10] STABILITY OF MINIMAL-SURFACES
    POGORELOV, AV
    DOKLADY AKADEMII NAUK SSSR, 1981, 260 (02): : 293 - 295