Development of Seebeck-Coefficient Measurement Systems Using Kelvin-Probe Force Microscopy

被引:2
|
作者
Miwa, Kazutoshi [1 ]
Salleh, Faiz [1 ,2 ]
Ikeda, Hiroya [1 ]
机构
[1] Shizuoka Univ, Elect Res Inst, Naka Ku, 3-5-1 Johoku, Hamamatsu, Shizuoka 4328011, Japan
[2] Japan Soc Promot Sci, Chiyoda Ku, Tokyo 1028472, Japan
来源
MAKARA JOURNAL OF TECHNOLOGY | 2013年 / 17卷 / 01期
关键词
Fermi energy; Kelvin-probe force microscopy; Seebeck coefficient;
D O I
10.7454/mst.v17i1.1922
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermoelectric device is investigated by a number of researchers in order to enhance the thermoelectric efficiency. It is known that the efficiency can be improved by quantum effect. However, it is difficult to measure the thermoelectric characteristics of nanometer-scale structures. Thus a new measurement method is expected to be developed. We propose to apply Kelvin-probe force microscopy (KFM) to characterization of thermoelectric materials. KFM can locally observe surface potential of Fermi energy of a sample without touching the sample surface. In the present paper, we estimate the Seebeck coefficient of thin Si-on-insulator layers using KFM.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 50 条
  • [21] Measurement of Surface Potential and Adhesion with Kelvin Probe Force Microscopy
    Zhang, Hao
    Hussain, Danish
    Meng, Xianghe
    Song, Jianmin
    Xie, Hui
    2016 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS), 2016,
  • [22] Kelvin-probe force microscopy defect study of ion implanted thermal oxide thin films on silicon
    Lay, MDH
    Pakes, CI
    McCallum, JC
    Commad 04: 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, 2005, : 405 - 408
  • [23] Influence of molecular order on the local work function of nanographene architectures:: A Kelvin-probe force microscopy study
    Palermo, V
    Palma, M
    Tomovic, Z
    Watson, MD
    Friedlein, R
    Müllen, K
    Samori, P
    CHEMPHYSCHEM, 2005, 6 (11) : 2371 - 2375
  • [24] Tracking speed bumps in organic field-effect transistors via pump-probe Kelvin-probe force microscopy
    Murawski, J.
    Moench, T.
    Milde, P.
    Hein, M. P.
    Nicht, S.
    Zerweck-Trogisch, U.
    Eng, L. M.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (24)
  • [25] Measurement and Visualization of Doping Profile in Silicon Using Kelvin Probe Force Microscopy (KPFM)
    Shin, Hyunjung
    Lee, Bongki
    Kim, Chanhyung
    Park, Hongsik
    Min, Dong-Ki
    Jung, Juwhan
    Hong, Seungbum
    Kim, Sungdong
    ELECTRONIC MATERIALS LETTERS, 2005, 1 (02) : 127 - 133
  • [26] Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy
    Li, Shengming
    Zhou, Yusheng
    Zi, Yunlong
    Zhang, Gong
    Wang, Zhong Lin
    ACS NANO, 2016, 10 (02) : 2528 - 2535
  • [27] Direct measurement of minority carriers diffusion length using Kelvin probe force microscopy
    Meoded, T
    Shikler, R
    Fried, N
    Rosenwaks, Y
    APPLIED PHYSICS LETTERS, 1999, 75 (16) : 2435 - 2437
  • [28] Measurement of contact potential of GaAs/AlGaAs heterostructure using Kelvin probe force microscopy
    Mizutani, T
    Usunami, T
    Kishimoto, S
    Maezawa, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (7A): : L767 - L769
  • [29] Pulsed Force Kelvin Probe Force Microscopy
    Jakob, Devon S.
    Wang, Haomin
    Xu, Xiaoji G.
    ACS NANO, 2020, 14 (04) : 4839 - 4848
  • [30] Kelvin probe force microscopy imaging using carbon nanotube probe
    Takahashi, S
    Kishida, T
    Akita, S
    Nakayama, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (6B): : 4314 - 4316