LAX REPRESENTATION FOR RESTRICTED FLOWS OF THE KDV HIERARCHY AND FOR THE KEPLER-PROBLEM

被引:20
作者
ANTONOWICZ, M [1 ]
RAUCHWOJCIECHOWSKI, S [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
关键词
D O I
10.1016/0375-9601(92)90648-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a spectral parameter dependent 2 x 2 matrix Lax pair for restricted flows of the KdV hierarchy. Explicit formulas are given for the Neumann, Gamier and the KdV (m = 2) restricted system. A simple generalization provides Lax pairs for the Jacobi and Neumann families of integrable potentials and for all spherically symmetric potentials. In particular the Lax representation for the Kepler problem is found
引用
收藏
页码:303 / 310
页数:8
相关论文
共 18 条
[1]   ISOSPECTRAL HAMILTONIAN FLOWS IN FINITE AND INFINITE DIMENSIONS .1. GENERALIZED MOSER SYSTEMS AND MOMENT MAPS INTO LOOP ALGEBRAS [J].
ADAMS, MR ;
HARNAD, J ;
PREVIATO, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (03) :451-500
[2]   RESTRICTED FLOWS OF SOLITON HIERARCHIES - COUPLED KDV AND HARRY-DYM CASE [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (21) :5043-5061
[3]   CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1990, 147 (8-9) :455-462
[4]   INTEGRABLE STATIONARY FLOWS - MIURA MAPS AND BI-HAMILTONIAN STRUCTURES [J].
ANTONOWICZ, M ;
FORDY, AP ;
WOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1987, 124 (03) :143-150
[5]   HOW TO CONSTRUCT FINITE-DIMENSIONAL BI-HAMILTONIAN SYSTEMS FROM SOLITON-EQUATIONS - JACOBI INTEGRABLE POTENTIALS [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (06) :2115-2125
[6]   BI-HAMILTONIAN FORMULATION OF THE HENON HEILES SYSTEM AND ITS MULTIDIMENSIONAL EXTENSIONS [J].
ANTONOWICZ, M ;
RAUCHWOJCIECHOWSKI, S .
PHYSICS LETTERS A, 1992, 163 (03) :167-172
[7]  
BLASZAK M, LITHMATR92 PREPR
[8]   COMPLETELY INTEGRABLE CLASS OF MECHANICAL SYSTEMS CONNECTED WITH KORTEWEG-DE VRIES AND MULTICOMPONENT SCHRODINGER EQUATIONS [J].
CHOODNOVSKY, DV ;
CHOODNOVSKY, GV .
LETTERE AL NUOVO CIMENTO, 1978, 22 (02) :47-51
[9]  
Dubrovin B.A.E., 1976, RUSSIAN MATH SURVEYS, V31, P59, DOI DOI 10.1070/RM1976V031N01ABEH001446
[10]   A FAMILY OF INTEGRABLE QUARTIC POTENTIALS RELATED TO SYMMETRICAL-SPACES [J].
FORDY, A ;
WOJCIECHOWSKI, S ;
MARSHALL, I .
PHYSICS LETTERS A, 1986, 113 (08) :395-400