ON SCHUR 3-GROUPS

被引:2
|
作者
Ryabov, G. K. [1 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova St, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
基金
俄罗斯基础研究基金会;
关键词
Permutation groups; Cayley schemes; S-rings; Schur groups;
D O I
10.17377/semi.2015.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. An S-ring A over G is a subring of the group ring ZG that has a linear basis associated with a special partition of G. About 40 years ago R. Poschel suggested the problem which can be formulated as follows: for which group G every S-ring A over it is schurian, i.e. the partition of G corresponding to A consists of the orbits of the one point stabilizer of a permutation group in Sym(G) that contains a regular subgroup isomorphic to G. The main result of the paper says that such G can not be non-abelian p-group, where p is an odd prime. In fact, modulo known results, it was sufficient to show that for every n >= 3 there exists a non-schurian S-ring over the group M-3n = < a, b vertical bar a(3n-1) = b(3) = e, a(b) = a(3n-2+1)>.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [41] GROWTH IN GROUPS: IDEAS AND PERSPECTIVES
    Helfgott, Harald A.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 357 - 413
  • [42] The Classification of Extremely Primitive Groups
    Burness, Timothy C.
    Thomas, Adam R.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (13) : 10148 - 10248
  • [43] Cyclic quotients of transitive groups
    Guralnick, RM
    JOURNAL OF ALGEBRA, 2000, 234 (02) : 507 - 532
  • [44] Connected quandles and transitive groups
    Hulpke, Alexander
    Stanovsky, David
    Vojtechovsksy, Petr
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (02) : 735 - 758
  • [45] On the permutation groups of cyclic codes
    Kenza Guenda
    T. Aaron Gulliver
    Journal of Algebraic Combinatorics, 2013, 38 : 197 - 208
  • [46] ON THE INVOLUTION FIXITY OF SIMPLE GROUPS
    Burness, Timothy C.
    Covato, Elisa
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (02) : 408 - 426
  • [47] Permutation Groups Generated by γ-Cycles
    Diaconescu, Razvan
    AXIOMS, 2022, 11 (10)
  • [48] On base sizes for symmetric groups
    Burness, Timothy C.
    Guralnick, Robert M.
    Saxl, Jan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 386 - 391
  • [49] BALANCED SUBGROUPS OF SYMMETRIC GROUPS
    Lehman, L.
    Konieczny, J.
    Lipscomb, S.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2005, 5 (02): : 307 - 329
  • [50] CONJUGACY IN HOUGHTON'S GROUPS
    Antolin, Y.
    Burillo, J.
    Martino, A.
    PUBLICACIONS MATEMATIQUES, 2015, 59 (01) : 3 - 16