ON SCHUR 3-GROUPS

被引:2
|
作者
Ryabov, G. K. [1 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova St, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
基金
俄罗斯基础研究基金会;
关键词
Permutation groups; Cayley schemes; S-rings; Schur groups;
D O I
10.17377/semi.2015.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. An S-ring A over G is a subring of the group ring ZG that has a linear basis associated with a special partition of G. About 40 years ago R. Poschel suggested the problem which can be formulated as follows: for which group G every S-ring A over it is schurian, i.e. the partition of G corresponding to A consists of the orbits of the one point stabilizer of a permutation group in Sym(G) that contains a regular subgroup isomorphic to G. The main result of the paper says that such G can not be non-abelian p-group, where p is an odd prime. In fact, modulo known results, it was sufficient to show that for every n >= 3 there exists a non-schurian S-ring over the group M-3n = < a, b vertical bar a(3n-1) = b(3) = e, a(b) = a(3n-2+1)>.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [21] Edge-primitive Cayley graphs on abelian groups and dihedral groups
    Pan, Jiangmin
    Wu, Cixuan
    Yin, Fugang
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3394 - 3401
  • [22] Bounding the size of permutation groups and complex linear groups of odd order
    Robinson, Geoffrey R.
    JOURNAL OF ALGEBRA, 2011, 335 (01) : 163 - 170
  • [23] Wildness in the product groups
    Hjorth, G
    FUNDAMENTA MATHEMATICAE, 2000, 164 (01) : 1 - 33
  • [24] OVERGROUPS OF PRIMITIVE GROUPS
    Aschbacher, Michael
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (01) : 37 - 82
  • [25] Countable Primitive Groups
    Tsachik Gelander
    Yair Glasner
    Geometric and Functional Analysis, 2008, 17 : 1479 - 1523
  • [26] THE GEOMETRY OF DIAGONAL GROUPS
    Bailey, R. A.
    Cameron, Peter J.
    Praeger, Cheryl E.
    Schneider, Csaba
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5259 - 5311
  • [27] ON THE SPREAD OF INFINITE GROUPS
    Cox, Charles Garnet
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2022, 65 (01) : 214 - 228
  • [28] Generating permutation groups
    Lucchini, A
    Menegazzo, F
    Morigi, M
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1729 - 1746
  • [29] A note on permutation groups
    Knoerr, Reinhard
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (02) : 613 - 616
  • [30] The classification of normalizing groups
    Araujo, Joao
    Cameron, Peter J.
    Mitchell, James D.
    Neunhoeffer, Max
    JOURNAL OF ALGEBRA, 2013, 373 : 481 - 490