ON SCHUR 3-GROUPS

被引:2
|
作者
Ryabov, G. K. [1 ]
机构
[1] Novosibirsk State Univ, 2 Pirogova St, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2015年 / 12卷
基金
俄罗斯基础研究基金会;
关键词
Permutation groups; Cayley schemes; S-rings; Schur groups;
D O I
10.17377/semi.2015.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group. An S-ring A over G is a subring of the group ring ZG that has a linear basis associated with a special partition of G. About 40 years ago R. Poschel suggested the problem which can be formulated as follows: for which group G every S-ring A over it is schurian, i.e. the partition of G corresponding to A consists of the orbits of the one point stabilizer of a permutation group in Sym(G) that contains a regular subgroup isomorphic to G. The main result of the paper says that such G can not be non-abelian p-group, where p is an odd prime. In fact, modulo known results, it was sufficient to show that for every n >= 3 there exists a non-schurian S-ring over the group M-3n = < a, b vertical bar a(3n-1) = b(3) = e, a(b) = a(3n-2+1)>.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [1] On Schur p-Groups of odd order
    Ryabov, Grigory
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [2] Permutation 3-Groups with no Fixed-point-free Elements
    Spiga, Pablo
    ALGEBRA COLLOQUIUM, 2013, 20 (03) : 383 - 394
  • [3] ABELIAN SCHUR GROUPS OF ODD ORDER
    Ponomarenko, I. N.
    Ryabov, G. K.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 397 - 411
  • [4] GENERALIZED SCHUR GROUPS
    Ryabov, G. K.
    ALGEBRA AND LOGIC, 2023, 62 (02) : 166 - 178
  • [5] Generalized Schur Groups
    G. K. Ryabov
    Algebra and Logic, 2023, 62 : 166 - 178
  • [6] Generalized Schur Groups
    Ryabov, G. K.
    ALGEBRA AND LOGIC, 2024, 62 (2) : 166 - 178
  • [7] ON NILPOTENT SCHUR GROUPS
    Ryabov, G. K.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 1077 - 1087
  • [8] Separability of Schur Rings over Abelian p-Groups
    G. K. Ryabov
    Algebra and Logic, 2018, 57 : 49 - 68
  • [9] SEPARABILITY OF SCHUR RINGS OVER ABELIAN p-GROUPS
    Ryabov, G. K.
    ALGEBRA AND LOGIC, 2018, 57 (01) : 49 - 68
  • [10] Schur rings over infinite groups II
    Humphries, Stephen P.
    JOURNAL OF ALGEBRA, 2020, 550 : 309 - 332