RANDOM DIRICHLET PROBLEM - SCALAR DARCYS-LAW

被引:3
|
作者
CHABI, E [1 ]
MICHAILLE, G [1 ]
机构
[1] UNIV MONTPELLIER 2,DEPT MATH,ANALYSE CONVEXE LAB,MONTPELLIER,FRANCE
关键词
DIRICHLET PROBLEM; EPICONVERGENCE; ERGODIQUE THEORY;
D O I
10.1007/BF01275586
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Ergodic Theory and Epiconvergence notion, we study the rate of convergence of solutions relative to random Dirichlet problems in domains of R(d) with random holes whose size tends to O. This stochastic analysis allows to extend the results already obtained in the corresponding periodic case.
引用
收藏
页码:119 / 140
页数:22
相关论文
共 50 条
  • [1] Dirichlet problem associated with a random quasilinear operator in a random domain
    Abddaimi, Y
    Michaille, G
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (01): : 103 - 121
  • [2] The Dirichlet problem for the equation of prescribed scalar curvature in Minkowski space
    John Urbas
    Calculus of Variations and Partial Differential Equations, 2003, 18 : 307 - 316
  • [3] The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation
    Bauzet, Caroline
    Vallet, Guy
    Wittbold, Petra
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) : 2503 - 2545
  • [4] On Dirichlet problem
    A. K. Gushchin
    Theoretical and Mathematical Physics, 2024, 218 : 51 - 67
  • [5] On Dirichlet problem
    Gushchin, A. K.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (01) : 51 - 67
  • [6] On the Dirichlet problem
    Villa-Morales, Jose
    EXPOSITIONES MATHEMATICAE, 2012, 30 (04) : 406 - 411
  • [7] The Dirichlet Problem in Weight Spaces
    D. E. Apushkinskaya
    A. I. Nazarov
    Journal of Mathematical Sciences, 2004, 123 (6) : 4527 - 4538
  • [8] A Dirichlet problem for polyharmonic functions
    Heinrich Begehr
    Jinyuan Du
    Yufeng Wang
    Annali di Matematica Pura ed Applicata, 2008, 187 : 435 - 457
  • [9] On a fourth order Dirichlet Problem
    Galewski, Marek
    Smejda, Joanna
    GEORGIAN MATHEMATICAL JOURNAL, 2010, 17 (03) : 495 - 509
  • [10] The Dirichlet problem in a domain with a slit
    Subbotin, Yu. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 208 - 221