On generalized nonlinear Euler-Bernoulli Beam type equations

被引:5
作者
Khaldi, Rabah [1 ]
Guezane-Lakoud, Assia [1 ]
机构
[1] Badji Mokhtar Annaba Univ, Dept Math, Lab Adv Mat, Annaba, Algeria
关键词
Euler-Bernouli Beam equation; upper and lower solutions method; existence of solution;
D O I
10.2478/ausm-2018-0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of a nonlinear Euler-Bernoulli Beam type equation involving both left and right Caputo fractional derivatives. Differently from the approaches of the other papers where they established the existence of solution for the linear Euler-Bernoulli Beam type equation numerically, we use the lower and upper solutions method with some new results on the monotonicity of the right Caputo derivative. Furthermore, we give the explicit expression of the upper and lower solutions. A numerical example is given to illustrate the obtained results.
引用
收藏
页码:90 / 100
页数:11
相关论文
共 16 条
[1]   Analytical schemes for a new class of fractional differential equations [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (21) :5469-5477
[2]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]  
Baleanu D, 2012, ROM REP PHYS, V64, P907
[6]  
De Coster C., 2006, 2 POINT BOUNDARY VAL
[7]  
Franco D., 2003, EXTR MATH, V18, P153
[8]  
Guezane-Lakoud A, 2017, PROGR FRACT DIFFER A, V3, P191, DOI [10.18576/pfda/030302, DOI 10.18576/PFDA/030302]
[9]   The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order [J].
Jiang, Daqing ;
Yang, Ying ;
Chu, Jifeng ;
O'Regan, Donal .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2815-2828
[10]  
Khaldi R., 2017, PROGR FRACT DIFFER A, V3, P53, DOI [10.18576/pfda/030105, DOI 10.18576/PFDA/030105]