A Majorant-Minorant Criterion for the Total Preservation of Global Solvability of a Functional Operator Equation

被引:16
作者
Chernov, A. V. [1 ]
机构
[1] Nizhnii Novgorod State Univ, Pr Gagarina 23, Nizhnii Novgorod 603950, Russia
关键词
total preservation of global solvability; functional operator equation; pointwise estimate of solutions;
D O I
10.3103/S1066369X12030085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nonlinear controlled functional operator equation in an ideal Banach space. We establish sufficient conditions for the global solvability for all controls from a given set, and obtain a pointwise estimate for solutions. Using upper and lower estimates of the functional component in the right-hand side of the initial equation (with a fixed operator component), we obtain majorant and minorant equations. We prove the stated theorem, assuming the monotonicity of the operator component in the right-hand side and the global solvability of both majorant and minorant equations. We give examples of the reduction of controlled initial boundary value problems to the equation under consideration.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 21 条
[1]  
Birkhoff G, 1984, LATTICE THEORY
[2]   A Majorant Criterion for the Total Preservation of Global Solvability of Controlled Functional Operator Equation [J].
Chernov, A. V. .
RUSSIAN MATHEMATICS, 2011, 55 (03) :85-95
[3]  
Chernov A. V., 2010, VESTNIK NIZHEGORODSK, P124
[4]  
Chernov A. V., 2010, P 7 ALL RUSS SCI C, P289
[5]  
Chernov A.V., 2000, CAND SCI PHYS MATH
[6]  
[Чернов Андрей Владимирович Chernov Andrei Vladimirovich], 2010, [Математические заметки, Mathematical Notes, Matematicheskie zametki], V88, P288, DOI 10.4213/mzm3898
[7]  
Hartman Ph., 1964, ORDINARY DIFFERENTIA
[8]  
Kalantarov V.K., 1977, ZAP NAUK SEM LOMI, V69, P77
[9]  
Kantorovich L.V., 1984, FUNCTIONAL ANAL
[10]  
Kolmogorov A.N., 1976, ELEMENTY TEORII FUNK