THE CORE CHAIN OF CIRCLES OF MASKIT'S EMBEDDING FOR ONCE-PUNCTURED TORUS GROUPS

被引:1
作者
Scorza, Irene [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Kleinian groups; limit sets;
D O I
10.1090/S1088-4173-06-00134-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we describe the limit set Lambda(n) of a sequence of manifolds N-n in the boundary of Maskit's embedding of the once- punctured torus. We prove that Lambda(n) contains a chain of tangent circles {C-n,C-j} that are described from the end invariants of the manifold. In particular, we give estimates in terms of n of the radii r(n,j) of the circles and prove that r(n,j) decrease when n tends to infinity. We then apply these results to McShane's identity, to obtain an estimate of the width of the limit set in terms of n.
引用
收藏
页码:288 / 325
页数:38
相关论文
共 25 条
[1]  
Akiyoshi H., PREPRINT
[2]   Cores of hyperbolic 3-manifolds and limits of Kleinian groups II [J].
Anderson, JW ;
Canary, RD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :489-505
[3]  
Beardon A. F., 1983, GRADUATE TEXTS MATH, V91
[4]  
Bers L., 1960, B AM MATH SOC, V66, P94, DOI 10.1090/S0002-9904-1960-10413-2
[5]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[6]   Markoff triples and quasifuchsian groups [J].
Bowditch, BH .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :697-736
[7]  
Evans R., PREPRINT
[8]   GROUP-COMPLETIONS AND LIMIT-SETS OF KLEINIAN-GROUPS [J].
FLOYD, WJ .
INVENTIONES MATHEMATICAE, 1980, 57 (03) :205-218
[9]   CYCLIC GROUPS OF MOBIUS TRANSFORMATIONS [J].
JORGENSEN, T .
MATHEMATICA SCANDINAVICA, 1973, 33 (02) :250-260
[10]  
Jorgensen Troels, 2003, LONDON MATH SOC LECT, V299, P183