On Friendly Index Sets of Spiders

被引:0
作者
Lee, Sin-Min
Ho-Kuen Ng [1 ]
Lau, Gee-Choon [2 ]
机构
[1] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[2] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu 85000, Malaysia
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2014年 / 8卷 / 01期
关键词
Vertex labelling; friendly labelling; cordiality; spider; tree;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A labeling f : V (G)-> A induces an edge labeling f* : E(G)-> A defined by f*(xy) = f(x)+ f(y), for each edge xy is an element of E(G). For i is an element of A, let v(f) (i) = vertical bar{v is an element of V(G) : f(v) = i}vertical bar and e(f) (i) = vertical bar{e is an element of E(G) : f*(e) = i}vertical bar. Let c(f) = {vertical bar e(f) (i) - e(f) (j)vertical bar : (i, j) is an element of A x A}. A labeling f of a graph G is said to be A-friendly if vertical bar v(f)(i) - v(f) (j)vertical bar <= 1 for all (i, j) is an element of A x A. If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be A-cordial. When A = Z(2), the friendly index set of the graph G, FI(G), is defined as {vertical bar e(f) (0) - e(f)(0)vertical bar: the vertex labeling f is Z(2)-friendly}. In this paper, we determined the friendly index sets of many spiders.
引用
收藏
页码:47 / 68
页数:22
相关论文
共 26 条
  • [1] Benson M., 1989, C NUMER, V68, P49
  • [2] CAHIT I, 1990, UTILITAS MATHEMATICA, V37, P189
  • [3] CAHIT I, 1987, ARS COMBINATORIA, V23, P201
  • [4] Cahit I., 1990, CONT METHODS GRAPH T, P209
  • [5] The computational complexity of cordial and equitable labelling
    Cairnie, N
    Edwards, K
    [J]. DISCRETE MATHEMATICS, 2000, 216 (1-3) : 29 - 34
  • [6] Uniformly cordial graphs
    Chartrand, Gary
    Lee, Sin-Min
    Zhang, Ping
    [J]. DISCRETE MATHEMATICS, 2006, 306 (8-9) : 726 - 737
  • [7] Hegde S. M., 2000, C NUMER, V25, P255
  • [8] HO YS, 1990, ARS COMBINATORIA, V29, P169
  • [9] A-CORDIAL GRAPHS
    HOVEY, M
    [J]. DISCRETE MATHEMATICS, 1991, 93 (2-3) : 183 - 194
  • [10] Kirchherr W.W., 1991, ALGEBRAIC APPROACHES, P294