GRAPHS ON THE TORUS AND GEOMETRY OF NUMBERS

被引:15
作者
SCHRIJVER, A [1 ]
机构
[1] UNIV AMSTERDAM,DEPT MATH,1018 TV AMSTERDAM,NETHERLANDS
关键词
D O I
10.1006/jctb.1993.1033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if G is a graph embedded on the torus S and eaeh nonnullhomotopic closed curve on S intersects G at least r times, then G contains at least ⌊ 3 4r⌋ pairwise disjoint nonnulihomotopic circuits. The factor 3 4 is best possible. We prove this by showing the equivalence of this bound to a bound in the two-dimensional geometry of numbers. To show the equivalence, we study integer norms, i.e., norms || · || such that ||x|| is an integer for each integer vector x. In particular, we show that each integer norm in two dimensions has associated with it a graph embedded on the torus, and conversely. © 1993 Academic Press, Inc.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 24 条
[1]   DENSELY EMBEDDED GRAPHS [J].
ARCHDEACON, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 54 (01) :13-36
[2]  
BELL DE, 1977, STUD APPL MATH, V56, P187
[3]  
BRUNET R, 1992, DISJOINT HOMOTOPIC E
[4]  
Cassels J.W.S., 1959, INTRO GEOMETRY NUMBE, P20
[5]  
Chvatal V., 1973, Discrete Mathematics, V4, P305, DOI 10.1016/0012-365X(73)90167-2
[6]  
DING G, IN PRESS J COMBIN B
[7]  
DOIGNON J.-P., 1973, J GEOM, V3, P71
[8]  
Edmonds J., 1977, ANN DISCRETE MATH, V1, P185
[9]  
FIEDLER JR, 1989, COMPUTING ORIENTABLE
[10]  
Hoffman A., 1974, MATH PROGRAMMING SER, V6, P352