THE HOROFUNCTION BOUNDARY OF THE HEISENBERG GROUP: THE CARNOT-CARATHEODORY METRIC

被引:6
作者
Klein, Tom [1 ]
Nicas, Andrew [2 ]
机构
[1] 325 Isl Dr,Apt 6, Madison, WI 53705 USA
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
来源
CONFORMAL GEOMETRY AND DYNAMICS | 2010年 / 14卷
基金
加拿大自然科学与工程研究理事会;
关键词
Heisenberg group; Carnot-Caratheodory distance; horofunction boundary; Busemann points; isometries;
D O I
10.1090/S1088-4173-2010-00217-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find the horofunction boundary of the (2n + 1)-dimensional Heisenberg group with the Carnot-Caratheodory distance and show that it is homeomorphic to a 2n-dimensional disk and that the Busemann points correspond to the (2n-1)-sphere boundary of this disk. We also show that the compactified Heisenberg group is homeomorphic to a (2n + 1)-dimensional sphere. As an application, we find the group of isometries of the Carnot-Caratheodory distance.
引用
收藏
页码:269 / 295
页数:27
相关论文
共 10 条