ALGEBRAIC PROPERTIES OF THE SPACE OF MULTIVALUED AND PARACONSISTENT LOGIC PROGRAMS

被引:0
|
作者
SUBRAHMANIAN, VS
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:56 / 67
页数:12
相关论文
共 50 条
  • [1] ALGEBRAIC PROPERTIES OF THE SPACE OF MULTIVALUED AND PARACONSISTENT LOGIC PROGRAMS
    SUBRAHMANIAN, VS
    FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE ////, 1989, 405 : 56 - 67
  • [2] Paraconsistent logic programs
    Alcântara, J
    Damásio, CV
    Pereira, LM
    LOGICS IN ARTIFICIAL INTELLIGENCE 8TH, 2002, 2424 : 345 - 356
  • [3] Algebraic semantics for paraconsistent Nelson's logic
    Odintsov, SP
    JOURNAL OF LOGIC AND COMPUTATION, 2003, 13 (04) : 453 - 468
  • [4] An Approach to Paraconsistent Multivalued Logic: Evaluation by Complex Truth Values
    Nescolarde-Selva, J.
    Uso-Domenech, J. L.
    Alonso-Stenberg, K.
    NEW DIRECTIONS IN PARACONSISTENT LOGIC, 2015, 152 : 147 - 163
  • [5] Paraconsistent declarative semantics for extended logic programs
    Arieli, O
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2002, 36 (04) : 381 - 417
  • [6] Paraconsistent Declarative Semantics for Extended Logic Programs
    Ofer Arieli
    Annals of Mathematics and Artificial Intelligence, 2002, 36 : 381 - 417
  • [7] On Paraconsistent Weak Kleene Logic: Axiomatisation and Algebraic Analysis
    Bonzio, Stefano
    Gil-Ferez, Jose
    Paoli, Francesco
    Peruzzi, Luisa
    STUDIA LOGICA, 2017, 105 (02) : 253 - 297
  • [8] On Paraconsistent Weak Kleene Logic: Axiomatisation and Algebraic Analysis
    Stefano Bonzio
    José Gil-Férez
    Francesco Paoli
    Luisa Peruzzi
    Studia Logica, 2017, 105 : 253 - 297
  • [9] CALCULUS FOR A MULTIVALUED-LOGIC ALGEBRAIC SYSTEM
    TAPIA, MA
    GUIMA, TA
    KATBAB, A
    APPLIED MATHEMATICS AND COMPUTATION, 1991, 42 (03) : 255 - 285
  • [10] Description Logic Programs: A Paraconsistent Relational Model Approach
    Jayakumar, Badrinath
    Sunderraman, Rajshekhar
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 139 - 157