UNIQUENESS AND NONUNIQUENESS OF COEXISTENCE STATES IN THE LOTKA-VOLTERRA COMPETITION MODEL

被引:72
作者
GUI, CF [1 ]
LOU, YA [1 ]
机构
[1] UNIV MINNESOTA,MINNEAPOLIS,MN 55455
关键词
D O I
10.1002/cpa.3160471203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1571 / 1594
页数:24
相关论文
共 27 条
[1]   GLOBAL BIFURCATION OF POSITIVE SOLUTIONS IN SOME SYSTEMS OF ELLIPTIC-EQUATIONS [J].
BLAT, J ;
BROWN, KJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (06) :1339-1353
[2]   BIFURCATION OF STEADY-STATE SOLUTIONS IN PREDATOR-PREY AND COMPETITION SYSTEMS [J].
BLAT, J ;
BROWN, KJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 97 :21-34
[3]  
CANTRELL RS, 1989, HOUSTON J MATH, V15, P341
[4]   SHOULD A PARK BE AN ISLAND [J].
CANTRELL, RS ;
COSNER, C .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (01) :219-252
[5]  
Cao X., 1989, NEUROBIOLOGY
[6]   STABLE COEXISTENCE STATES IN THE VOLTERRA-LOTKA COMPETITION MODEL WITH DIFFUSION [J].
COSNER, C ;
LAZER, AC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (06) :1112-1132
[7]  
Crandall MG., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[9]   ON POSITIVE SOLUTIONS OF SOME PAIRS OF DIFFERENTIAL-EQUATIONS .2. [J].
DANCER, EN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 60 (02) :236-258