BACKLUND TRANSFORMATION FOR SOLUTIONS OF MODIFIED KORTEWEG-DE VRIES EQUATION

被引:37
|
作者
WADATI, M [1 ]
机构
[1] KYOIKU UNIV,INST OPTICAL RES,SINZYUKU,TOKYO,JAPAN
关键词
D O I
10.1143/JPSJ.36.1498
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1498 / 1498
页数:1
相关论文
共 50 条
  • [31] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [32] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [33] Quasiperiodic solutions of the Korteweg-de Vries equation
    Zaiko, YN
    TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 235 - 236
  • [34] Accelerating solutions of the Korteweg-de Vries equation
    Winkler, Maricarmen A.
    Asenjo, Felipe A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
  • [35] Analyticity of solutions of the Korteweg-de Vries equation
    Tarama, S
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (01): : 1 - 32
  • [36] On the Singular Solutions of the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    MATHEMATICAL NOTES, 2010, 88 (5-6) : 741 - 747
  • [37] Smooth positon solutions of the focusing modified Korteweg-de Vries equation
    Xing, Qiuxia
    Wu, Zhiwei
    Mihalache, Dumitru
    He, Jingsong
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2299 - 2310
  • [38] Breathers and localized solutions of complex modified Korteweg-de Vries equation
    Liu, Yue-Feng
    Guo, Rui
    Li, Hua
    MODERN PHYSICS LETTERS B, 2015, 29 (23):
  • [39] Darboux transformation, soliton solutions of the variable coefficient nonlocal modified Korteweg-de Vries equation
    Zhang, Feng
    Hu, Yuru
    Xin, Xiangpeng
    Liu, Hanze
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [40] Darboux transformation and soliton solutions for a three-component modified Korteweg-de Vries equation
    Wurile
    Zhaqilao
    WAVE MOTION, 2019, 88 : 73 - 84