Solutions and stability of a variant of Van Vleck's and d'Alembert's functional equations

被引:0
|
作者
Rassias, Th. M. [1 ]
Elqorachi, Elhoucien [2 ]
Redouani, Ahmed [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zofrafou Campus, Athens 15780, Greece
[2] Ibn Zohr Univ, Fac Sci, Dept Math, Agadir, Morocco
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2016年 / 7卷 / 02期
关键词
d'Alembert's equation; Van Vleck's equation; sine function; multiplicative function; superstability;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper. (1) We determine the complex-valued solutions of the following variant of Van Vleck's functional equation integral(s) f(sigma(y)xt)d mu(t) - integral(s) f(xyt)d mu(t) = 2f (x) f (y), x, y is an element of S, where S is a semigroup, sigma is an involutive morphism of S, and mu is a complex measure that is linear combinations of Dirac measures (delta(zi))(i is an element of I), such that for all i is an element of I, z(i) is contained in the center of S. (2) We determine the complex-valued continuous solutions of the following variant of d'Alembert's functional equation integral(s) f(xty)d nu(t) - integral(s) f(sigma(y)tx)d nu(t) = 2f (x) f (y), x, y is an element of S, where S is a topological semigroup, sigma is a continuous involutive automorphism of S, and v is a complex measure with compact support and which is sigma-invariant. (3) We prove the superstability theorems of the first functional equation.
引用
收藏
页码:279 / 301
页数:23
相关论文
共 50 条
  • [1] A Fully Pexiderized Variant of d’Alembert’s Functional Equations on Monoids
    Bruce Ebanks
    Results in Mathematics, 2021, 76
  • [2] A VARIANT OF D'ALEMBERT'S AND WILSON'S FUNCTIONAL EQUATIONS FOR MATRIX VALUED FUNCTIONS
    Chahbi, Abdellatif
    Chakiri, Mohamed
    Elqorachi, Elhoucien
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 785 - 802
  • [3] Integral Van Vleck’s and Kannappan’s functional equations on semigroups
    Elqorachi Elhoucien
    Aequationes mathematicae, 2017, 91 : 83 - 98
  • [4] Integral Van Vleck's and Kannappan's functional equations on semigroups
    Elhoucien, Elqorachi
    AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 83 - 98
  • [5] A variant of d’Alembert’s functional equation
    Henrik Stetkær
    Aequationes mathematicae, 2015, 89 : 657 - 662
  • [6] A variant of d'Alembert's functional equation
    Stetkaer, Henrik
    AEQUATIONES MATHEMATICAE, 2015, 89 (03) : 657 - 662
  • [7] Hyers–Ulam stability of generalized Wilson’s and d’Alembert’s functional equations
    Zeglami D.
    Roukbi A.
    Kabbaj S.
    Afrika Matematika, 2015, 26 (1-2) : 215 - 223
  • [8] D'Alembert's functional equations on hypergroups
    Roukbi, A.
    Zeglami, D.
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2011, 2 (02) : 147 - 166
  • [9] A VARIANT OF D'ALEMBERT'S MATRIX FUNCTIONAL EQUATION
    Aissi, Youssef
    Zeglami, Driss
    Ayoubi, Mohamed
    ANNALES MATHEMATICAE SILESIANAE, 2021, 35 (01) : 21 - 43
  • [10] The stability of d'Alembert's functional equation
    Tyrala I.
    aequationes mathematicae, 2005, 69 (3) : 250 - 256