An Iterative Method for Generalized Nonlinear Complementarity Problems

被引:7
作者
Habetler, G. J. [1 ]
Price, A. L. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math, Troy, NY 12180 USA
[2] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
D O I
10.1007/BF00934289
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An iterative method for solving generalized nonlinear complementarity problems (Ref. 1) involving strongly K-copositive operators is introduced. Conditions are presented which guarantee the convergence of the method; in addition, the sequence of iterates is used to prove the existence of a solution to the problem under conditions not included in the previous study. Separate consideration is given to the generalized linear complementarity problem.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 50 条
[31]   A SQP METHOD FOR GENERAL NONLINEAR COMPLEMENTARITY PROBLEMS [J].
Xiu NaihuaDeptof ApplMathNorthern Jiaotong UnivBeijing Emailnhxiucenternjtueducn .
Applied Mathematics:A Journal of Chinese Universities, 2000, (04) :433-442
[32]   A Smoothing Newton method for Nonlinear Complementarity Problems [J].
Feng, Ning ;
Tian, Zhi-yuan ;
Qu, Xin-lei .
SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 :1090-1093
[33]   An improvement lqp method for nonlinear complementarity problems [J].
Bnouhachem A. ;
Qin X. .
Applied Set-Valued Analysis and Optimization, 2020, 2 (01) :95-107
[34]   A filter method for solving nonlinear complementarity problems [J].
Nie, PY .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) :677-694
[35]   A smoothing Newton method for nonlinear complementarity problems [J].
Tang, Jingyong ;
Dong, Li ;
Zhou, Jinchuan ;
Fang, Liang .
COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01) :107-118
[36]   A new hybrid method for nonlinear complementarity problems [J].
Shao-Jian Qu ;
Mark Goh ;
Xiujie Zhang .
Computational Optimization and Applications, 2011, 49 :493-520
[37]   A SQP method for general nonlinear complementarity problems [J].
Naihua X. .
Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) :433-442
[38]   A new hybrid method for nonlinear complementarity problems [J].
Qu, Shao-Jian ;
Goh, Mark ;
Zhang, Xiujie .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (03) :493-520
[39]   A New Homotopy Method for Nonlinear Complementarity Problems [J].
Jundi Ding and Hongyou Yin Department of Mathematics Nanjing University of Aeronautics and Astronautics Nanjing China .
Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (02) :155-163