An Iterative Method for Generalized Nonlinear Complementarity Problems

被引:7
|
作者
Habetler, G. J. [1 ]
Price, A. L. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Math, Troy, NY 12180 USA
[2] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
D O I
10.1007/BF00934289
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An iterative method for solving generalized nonlinear complementarity problems (Ref. 1) involving strongly K-copositive operators is introduced. Conditions are presented which guarantee the convergence of the method; in addition, the sequence of iterates is used to prove the existence of a solution to the problem under conditions not included in the previous study. Separate consideration is given to the generalized linear complementarity problem.
引用
收藏
页码:36 / 48
页数:13
相关论文
共 50 条
  • [31] A SQP METHOD FOR GENERAL NONLINEAR COMPLEMENTARITY PROBLEMS
    Xiu Naihua.Dept.of Appl.Math.
    AppliedMathematics:AJournalofChineseUniversities, 2000, (04) : 433 - 442
  • [32] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [33] An improvement lqp method for nonlinear complementarity problems
    Bnouhachem A.
    Qin X.
    Applied Set-Valued Analysis and Optimization, 2020, 2 (01): : 95 - 107
  • [34] A filter method for solving nonlinear complementarity problems
    Nie, PY
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) : 677 - 694
  • [35] A New Homotopy Method for Nonlinear Complementarity Problems
    Jundi Ding and Hongyou Yin (Department of Mathematics
    Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (02) : 155 - 163
  • [36] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [37] A new hybrid method for nonlinear complementarity problems
    Shao-Jian Qu
    Mark Goh
    Xiujie Zhang
    Computational Optimization and Applications, 2011, 49 : 493 - 520
  • [38] A SQP method for general nonlinear complementarity problems
    Naihua X.
    Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (4) : 433 - 442
  • [39] A new hybrid method for nonlinear complementarity problems
    Qu, Shao-Jian
    Goh, Mark
    Zhang, Xiujie
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2011, 49 (03) : 493 - 520
  • [40] New system of generalized nonlinear co-complementarity problems
    Ding K.
    Huang N.-J.
    Kim J.K.
    Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 379 - 391