Random cubatures and quasi-Monte Carlo methods

被引:0
|
作者
Antonov, Anton A. [1 ]
Ermakov, Sergej M. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
来源
MONTE CARLO METHODS AND APPLICATIONS | 2015年 / 21卷 / 03期
关键词
Monte Carlo; quasi-Monte Carlo; high-dimensional integration; stratified sampling; random cubature formulas; Sobol sequences;
D O I
10.1515/mcma-2015-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish and examine the deep connection between highly stratified random cubature formulas and quasi-Monte Carlo methods. A class of such formulas, designed to exactly integrate the introduced generalized s-dimensional Haar system, is shown to have additional variance reduction compared to the known theoretical upper bound. We propose several equivalent expressions for the variance within the standard quasi-Monte Carlo setting. The theory of random cubatures is supplemented with both refined versions of known results and completely new facts.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 50 条
  • [31] Quasi-Monte Carlo methods in robust control design
    Hokayem, PF
    Abdallah, CT
    Dorato, P
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 2435 - 2440
  • [32] Smoothness and dimension reduction in quasi-Monte Carlo methods
    Moskowitz, B
    Caflisch, RE
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : 37 - 54
  • [33] Parameterization based on randomized quasi-Monte Carlo methods
    Okten, Giray
    Willyard, Matthew
    PARALLEL COMPUTING, 2010, 36 (07) : 415 - 422
  • [34] Some current issues in quasi-Monte Carlo methods
    Niederreiter, H
    JOURNAL OF COMPLEXITY, 2003, 19 (03) : 428 - 433
  • [35] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [36] Smoothness and Dimension Reduction in Quasi-Monte Carlo Methods
    Moskowitz, B.
    Caflisch, R. E.
    Mathematical and Computer Modelling (Oxford), 23 (8-9):
  • [37] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    Numerische Mathematik, 2015, 131 : 329 - 368
  • [38] Randomized quasi-Monte Carlo methods in pricing securities
    Ökten, G
    Eastman, W
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2004, 28 (12): : 2399 - 2426
  • [39] Variance reduction techniques and quasi-Monte Carlo methods
    Wang, XQ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (02) : 309 - 318
  • [40] Parameterization based on randomized quasi-Monte Carlo methods
    Okten, Giray
    Willyard, Matthew
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 2885 - 2891