Random cubatures and quasi-Monte Carlo methods

被引:0
作者
Antonov, Anton A. [1 ]
Ermakov, Sergej M. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
关键词
Monte Carlo; quasi-Monte Carlo; high-dimensional integration; stratified sampling; random cubature formulas; Sobol sequences;
D O I
10.1515/mcma-2015-0102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish and examine the deep connection between highly stratified random cubature formulas and quasi-Monte Carlo methods. A class of such formulas, designed to exactly integrate the introduced generalized s-dimensional Haar system, is shown to have additional variance reduction compared to the known theoretical upper bound. We propose several equivalent expressions for the variance within the standard quasi-Monte Carlo setting. The theory of random cubatures is supplemented with both refined versions of known results and completely new facts.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 13 条
  • [1] Empirically Estimating Error of Integration by Quasi-Monte Carlo Method
    Antonov, A. A.
    Ermakov, S. M.
    [J]. VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2014, 47 (01) : 1 - 8
  • [2] Generalized Haar function systems, digital nets and quasi-Monte Carlo integration
    Entacher, E
    [J]. WAVELET APPLICATIONS III, 1996, 2762 : 115 - 126
  • [3] Ermakov S., 1964, ZH VYCH MAT MAT FIZ, V4, P550
  • [4] Ermakov S., 1960, TEOR VEROYA PRIMEN, V5, P473
  • [5] Ermakov S., 1966, TEOR VEROYA PRIMEN, V11, P728
  • [6] Ermakov S.M, 1975, MONTE CARLO METHODE
  • [7] Granovskii B. L., 1968, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V8, P879
  • [8] Handscomb David C., 1964, NUMER MATH, V6, P261
  • [9] GENERAL DISCREPANCY ESTIMATES .2. THE HAAR FUNCTION SYSTEM
    HELLEKALEK, P
    [J]. ACTA ARITHMETICA, 1994, 67 (04) : 313 - 322
  • [10] LEcuyer P., 2005, MODELING UNCERTAINTY, P419, DOI [10.1007/0-306-48102-2_20.232, DOI 10.1007/0-306-48102-2_20]