NEW EXAMPLES OF HARMONIC DIFFEOMORPHISMS OF THE HYPERBOLIC PLANE ONTO ITSELF

被引:18
作者
CHOI, HI [1 ]
TREIBERGS, A [1 ]
机构
[1] UNIV UTAH,DEPT MATH,SALT LAKE CITY,UT 84112
关键词
D O I
10.1007/BF01278983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:249 / 256
页数:8
相关论文
共 9 条
[1]  
AKUTAGAWA K, 1986, GAUSS MAP SPACELIKE
[2]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[3]  
CHOI HI, 1988, GAUSS MAP SPACELIKE
[4]   SURFACES OF REVOLUTION WITH CONSTANT MEAN-CURVATURE IN LORENTZ-MINKOWSKI SPACE [J].
HANO, J ;
NOMIZU, K .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (03) :427-437
[5]   HARMONIC MAPS AND CLASSICAL SURFACE THEORY IN MINKOWSKI 3-SPACE [J].
MILNOR, TK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (01) :161-185
[6]   TENSION FIELD OF GAUSS MAP [J].
RUH, EA ;
VILMS, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 149 (02) :569-&
[7]   UNIVALENT HARMONIC MAPS BETWEEN SURFACES [J].
SCHOEN, R ;
YAU, ST .
INVENTIONES MATHEMATICAE, 1978, 44 (03) :265-278
[8]   ENTIRE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN MINKOWSKI SPACE [J].
TREIBERGS, AE .
INVENTIONES MATHEMATICAE, 1982, 66 (01) :39-56
[9]  
[No title captured]