On the Algorithm of Smoothing by a Spline with Bilateral Constraints

被引:1
作者
Rozhenko, A. I. [1 ]
Fedorov, E. A. [2 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Siberian Branch, Pr Akad Lavrenteva 6, Novosibirsk 630090, Russia
[2] Data East Ltd, Pr Akad Lavrenteva 2-2, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
smoothing; spline; Hilbert space; convex programming; reproducing mapping; radial basis function;
D O I
10.1134/S1995423916030071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the problem of constructing a spline sigma in the Hilbert space, which satisfies the bilateral constraints z(-) <= A sigma <= z(+) with a linear operator A and minimizes the squared Hilbert seminorm is studied. A solution to this problem can be obtained with convex programming iterative methods, in particular, with the gradient projection method. A modification of the gradient projection method is proposed, which allows one to find a set of active constraints with a smaller number of iterations. The efficiency of the modification proposed is demonstrated in the problem of approximation with a pseudolinear bivariate spline.
引用
收藏
页码:257 / 266
页数:10
相关论文
共 16 条
[1]  
Bazaraa MS, 1979, NONLINEAR PROGRAMMIN
[2]  
Bezhaev A.Yu, 1993, VARIATIONAL SPLINE T
[3]  
BEZHAEV AY, 1990, SOV J NUMER ANAL MAT, V5, P91
[4]   Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey [J].
Bogdanov, Vladimir V. ;
Karsten, Wladimir V. ;
Miroshnichenko, Valeriy L. ;
Volkov, Yuriy S. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (04) :779-786
[5]  
Duchon J., 1977, LECT NOTES MATH, P85, DOI DOI 10.1007/BFB0086566
[6]  
IGNATOV MI, 1991, NATURALNYE SPLAINY M
[7]  
Kovalkov A.V., 1983, SERDIKA BLGARSKO MAT, V9, P417
[8]  
Loran P.-J., 1972, APPROKSIMATSIYA OPTI
[9]  
MADYCH WR, 1990, MATH COMPUT, V54, P211, DOI 10.1090/S0025-5718-1990-0993931-7
[10]  
Mokshin P. V., 2015, SIB ZH IND MAT, V18, P63